随着基于位置的社交网络(Location-Based Social Networks,LBSNs)与兴趣点(Point of Interest,POI)推荐的有效组合,近年来已涌现出大量的相关研究,这些方法主要可分为将地理、社会、类别、文本以及时间等上下文信息进行建模并融合,进而...随着基于位置的社交网络(Location-Based Social Networks,LBSNs)与兴趣点(Point of Interest,POI)推荐的有效组合,近年来已涌现出大量的相关研究,这些方法主要可分为将地理、社会、类别、文本以及时间等上下文信息进行建模并融合,进而克服数据稀疏问题并提升兴趣点推荐的性能.但已有的兴趣点推荐方法认为不同上下文间相互独立,在对不同上下文建模并融合的过程中忽略了其内在联系,导致上下文信息未得到充分利用.另外,在将上下文模型融合到用户自身偏好模型时,未考虑上下文信息对用户历史签到记录的不同影响.为应对上述挑战,本文合理地重构了上下文信息模型并有效地融合到用户偏好模型中,且提出了一种基于用户活动轨迹和个性化区域划分的兴趣点推荐方法.该方法根据用户的活动轨迹刻画出其日常活动区域,并探索了不同用户间的地理距离分布以及活动轨迹的相似度以建模社会关系对用户签到的影响.进一步地,结合用户活动轨迹区域内的POI的地理信息,使用带有自适应带宽的核密度估计方法评估POI间的地理相关性,以建模POI地理信息对用户签到的影响.最后,将用户社会关系模型和POI地理信息模型与用户自身偏好模型融合,使用改进的加权矩阵分解技术求解用户的个性化POI推荐.本文分别采用经典的和当前流行的相关研究作为基准,在Gowalla和Foursquare数据集上进行对比,实验结果表明本文方法具有更好的POI推荐效果,说明了本文提出的模型在融合策略和克服数据稀疏性方面更具优势.展开更多
基金Supported by National Natural Science Foundation of China (61304079, 61125306, 61034002), the Open Research Project from SKLMCCS (20120106), the Fundamental Research Funds for the Central Universities (FRF-TP-13-018A), and the China Postdoctoral Science. Foundation (201_3M_ 5305_27)_ _ _
文摘为有致动器浸透和未知动力学的分离时间的系统的一个班的一个新奇最佳的追踪控制方法在这份报纸被建议。计划基于反复的适应动态编程(自动数据处理) 算法。以便实现控制计划,一个 data-based 标识符首先为未知系统动力学被构造。由介绍 M 网络,稳定的控制的明确的公式被完成。以便消除致动器浸透的效果, nonquadratic 表演功能被介绍,然后一个反复的自动数据处理算法被建立与集中分析完成最佳的追踪控制解决方案。为实现最佳的控制方法,神经网络被用来建立 data-based 标识符,计算性能索引功能,近似最佳的控制政策并且分别地解决稳定的控制。模拟例子被提供验证介绍最佳的追踪的控制计划的有效性。
文摘随着基于位置的社交网络(Location-Based Social Networks,LBSNs)与兴趣点(Point of Interest,POI)推荐的有效组合,近年来已涌现出大量的相关研究,这些方法主要可分为将地理、社会、类别、文本以及时间等上下文信息进行建模并融合,进而克服数据稀疏问题并提升兴趣点推荐的性能.但已有的兴趣点推荐方法认为不同上下文间相互独立,在对不同上下文建模并融合的过程中忽略了其内在联系,导致上下文信息未得到充分利用.另外,在将上下文模型融合到用户自身偏好模型时,未考虑上下文信息对用户历史签到记录的不同影响.为应对上述挑战,本文合理地重构了上下文信息模型并有效地融合到用户偏好模型中,且提出了一种基于用户活动轨迹和个性化区域划分的兴趣点推荐方法.该方法根据用户的活动轨迹刻画出其日常活动区域,并探索了不同用户间的地理距离分布以及活动轨迹的相似度以建模社会关系对用户签到的影响.进一步地,结合用户活动轨迹区域内的POI的地理信息,使用带有自适应带宽的核密度估计方法评估POI间的地理相关性,以建模POI地理信息对用户签到的影响.最后,将用户社会关系模型和POI地理信息模型与用户自身偏好模型融合,使用改进的加权矩阵分解技术求解用户的个性化POI推荐.本文分别采用经典的和当前流行的相关研究作为基准,在Gowalla和Foursquare数据集上进行对比,实验结果表明本文方法具有更好的POI推荐效果,说明了本文提出的模型在融合策略和克服数据稀疏性方面更具优势.