期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于鲁棒输入训练神经网络的非线性多传感器故障诊断方法及其应用 被引量:9
1
作者 司风琪 李欢欢 徐治皋 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第3期574-578,共5页
针对非线性系统多传感器故障诊断时出现的检测准确性下降和数据重构产生的残差污染问题,提出了基于鲁棒输入训练神经网络非线性多传感器故障诊断模型.在目标函数中引入影响因子函数和可靠性系数,并通过计算机模拟和仿真确定最佳影响因... 针对非线性系统多传感器故障诊断时出现的检测准确性下降和数据重构产生的残差污染问题,提出了基于鲁棒输入训练神经网络非线性多传感器故障诊断模型.在目标函数中引入影响因子函数和可靠性系数,并通过计算机模拟和仿真确定最佳影响因子函数形式,抑制了多个含有显著误差故障数据的不良影响,并增加了具备高可靠性的重要数据影响权重,大大减小了残差污染,提高了故障诊断的准确性和可靠性.以某300 MW机组1#高加测点为对象进行算例分析,验证了该方法对于多传感器故障诊断的可行性和准确性,计算和模拟表明,RITNN方法优于线性PCA和传统ITNN方法,能够更加准确进行多传感器故障的检测和故障数据的重构. 展开更多
关键词 鲁棒输入训练神经网络 故障诊断 多传感器 影响因子 可靠性系数
在线阅读 下载PDF
基于混合型鲁棒输入训练神经网络的非线性数据校正方法及其应用 被引量:1
2
作者 任少君 司风琪 +1 位作者 李欢欢 徐治皋 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期322-327,共6页
提出了一种基于混合型鲁棒输入训练神经网络的非线性数据校正模型,在基于过程数据的神经网络模型中引入了反映过程机理的约束方程.根据所提模型的网络结构,采用罚函数法将约束方程加入到网络训练目标函数中,并采用BP算法推导出该网络的... 提出了一种基于混合型鲁棒输入训练神经网络的非线性数据校正模型,在基于过程数据的神经网络模型中引入了反映过程机理的约束方程.根据所提模型的网络结构,采用罚函数法将约束方程加入到网络训练目标函数中,并采用BP算法推导出该网络的学习方法,进而给出了基于该方法的数据校正流程.分别以一个五维非线性系统和某1 000 MW机组1#高加测点为对象进行算例分析,结果表明:所提出的模型能正确检验出测量数据中的不良值,具有良好的鲁棒性;在完成数据校正的同时还能保证重构数据满足相应的系统机理约束条件;在多测点同时发生故障时,也能保证数据校正的准确性和可靠性. 展开更多
关键词 混合型鲁棒输入训练神经网络 故障诊断 机理约束 罚函数 数据校正
在线阅读 下载PDF
基于多模型鲁棒输入训练神经网络协同的燃气–蒸汽联合循环机组传感器故障诊断方法 被引量:6
3
作者 黄郑 王红星 +2 位作者 于海泉 李逗 司风琪 《中国电力》 CSCD 北大核心 2019年第11期125-133,共9页
为提高燃气–蒸汽联合循环机组传感器测量值的准确性及可靠性,提出了一种基于多模型鲁棒输入训练神经网络(RITNN)的燃气–蒸汽联合循环机组传感器故障诊断方法。该方法建立若干燃气–蒸汽联合循环重要参数的数据重构模型,并对各模型进... 为提高燃气–蒸汽联合循环机组传感器测量值的准确性及可靠性,提出了一种基于多模型鲁棒输入训练神经网络(RITNN)的燃气–蒸汽联合循环机组传感器故障诊断方法。该方法建立若干燃气–蒸汽联合循环重要参数的数据重构模型,并对各模型进行优先级划分,以串并联方式设定模型间关系,通过可靠参数的逐级生成和传递,有效抑制了多传感器显著故障产生的残差污染,提高了故障诊断的准确性及可靠性,进而给出了传感器故障诊断流程,建立了完整的传感器故障诊断系统。以某200 MW级燃气–蒸汽联合循环机组为研究对象,对多传感器故障进行诊断,并与RITNN单一模型方法和输入训练神经网络(ITNN)单一模型方法进行对比,结果表明,提出的多模型RITNN故障诊断方法诊断精度更高,可保证燃气–蒸汽联合循环机组稳定运行。 展开更多
关键词 多模型 鲁棒输入训练神经网络 故障诊断 联合循环
在线阅读 下载PDF
基于非鲁棒特征的图卷积神经网络对抗训练方法 被引量:4
4
作者 承琪 朱洪亮 辛阳 《计算机应用研究》 CSCD 北大核心 2022年第8期2278-2283,共6页
图卷积神经网络可以通过图卷积提取图数据的有效信息,但容易受到对抗攻击的影响导致模型性能下降。对抗训练能够用于提升神经网络鲁棒性,但由于图的结构及节点特征通常是离散的,无法直接基于梯度构造对抗扰动,而在模型的嵌入空间中提取... 图卷积神经网络可以通过图卷积提取图数据的有效信息,但容易受到对抗攻击的影响导致模型性能下降。对抗训练能够用于提升神经网络鲁棒性,但由于图的结构及节点特征通常是离散的,无法直接基于梯度构造对抗扰动,而在模型的嵌入空间中提取图数据的特征作为对抗训练的样本,能够降低构造复杂度。借鉴集成学习思想,提出一种基于非鲁棒特征的图卷积神经网络对抗训练方法VDERG,分别针对拓扑结构和节点属性两类特征,构建两个图卷积神经网络子模型,通过嵌入空间提取非鲁棒特征,并基于非鲁棒特征完成对抗训练,最后集成两个子模型输出的嵌入向量作为模型节点表示。实验结果表明,提出的对抗训练方法在干净数据上的准确率平均提升了0.8%,在对抗攻击下最多提升了6.91%的准确率。 展开更多
关键词 图卷积神经网络 集成学习 特征 对抗训练
在线阅读 下载PDF
训练模式对的摄动对单体模糊神经网络的影响 被引量:2
5
作者 何春梅 叶有培 徐蔚鸿 《南京理工大学学报》 EI CAS CSCD 北大核心 2009年第1期12-15,25,共5页
针对训练模式对的小幅摄动可能对模糊神经网络的性能产生不利影响,提出了单体模糊神经网络对训练模式对摄动的鲁棒性概念,并就训练模式对的最大保序摄动的情形对单体模糊神经网络(MFNN)进行了具体分析,一般的模糊神经网络对训练模式对... 针对训练模式对的小幅摄动可能对模糊神经网络的性能产生不利影响,提出了单体模糊神经网络对训练模式对摄动的鲁棒性概念,并就训练模式对的最大保序摄动的情形对单体模糊神经网络(MFNN)进行了具体分析,一般的模糊神经网络对训练模式对摄动的鲁棒性概念可类似定义。理论研究表明:当训练模式对发生最大γ保序摄动时,在h=5的条件下,单体模糊神经网络对训练模式对的摄动全局拥有好的鲁棒性,这将有助于MFNN系统的性能分析、学习算法的选择和模式对获取。 展开更多
关键词 单体模糊神经网络 学习算法 摄动 训练模式对
在线阅读 下载PDF
带有稳定学习算法的小波神经网络及应用 被引量:3
6
作者 丛秋梅 柴天佑 余文 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第3期305-308,316,共5页
针对当系统存在未建模动态时,神经网络辨识易产生参数漂移和不稳定的问题,采用输入-状态稳定性(ISS,input-to-state stability)分析方法,获得小波神经网络权值矩阵和小波尺度参数的误差反传类时变学习算法,该算法不带有鲁棒修正即可以... 针对当系统存在未建模动态时,神经网络辨识易产生参数漂移和不稳定的问题,采用输入-状态稳定性(ISS,input-to-state stability)分析方法,获得小波神经网络权值矩阵和小波尺度参数的误差反传类时变学习算法,该算法不带有鲁棒修正即可以实现小波神经网络的鲁棒稳定性.仿真例子表明,此稳定学习算法优于一般的误差反传算法,并将带有稳定学习算法的小波神经网络用于污水处理过程出水水质COD(化学需氧量,chemical oxygen demand)的预测,获得了较好的效果. 展开更多
关键词 小波神经网络 输入-状态稳定性 稳定学习算法 稳定性 污水处理过程 化学需氧量
在线阅读 下载PDF
基于分散化神经鲁棒控制的轨迹跟踪算法研究 被引量:3
7
作者 胡海兵 杨建德 +1 位作者 张结文 金施群 《现代电子技术》 北大核心 2019年第3期111-115,共5页
针对外部扰动以及建模误差对机械臂轨迹跟踪精度影响的问题,利用递归神经网络设计了分散化的神经鲁棒控制器,采用机械臂各个关节状态方程的子系统表示整个系统。使用滤错训练算法估计神经网络未知权重系数,同时引入鲁棒项抑制关节神经... 针对外部扰动以及建模误差对机械臂轨迹跟踪精度影响的问题,利用递归神经网络设计了分散化的神经鲁棒控制器,采用机械臂各个关节状态方程的子系统表示整个系统。使用滤错训练算法估计神经网络未知权重系数,同时引入鲁棒项抑制关节神经控制器之间的相互影响和建模误差,并利用Lyapunov函数进行稳定性证明。与没有鲁棒项的仿真结果对比表明,设计的分散化神经鲁棒控制器具有更精确的轨迹跟踪精度,误差的收敛性更好,稳定性更高。 展开更多
关键词 神经控制器 轨迹跟踪 递归神经网络 滤错训练算法 机械臂
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部