近年来随着氮化镓器件制造工艺的迅速发展,氮化镓高电子迁移率晶体管(GaN HEMT)已经开始应用在电力电子领域。GaN HEMT以其低寄生参数、无反向恢复损耗、高开通速度等特点,可降低开关管的开关损耗。本文以600V GaN HEMT为研究对象,研究...近年来随着氮化镓器件制造工艺的迅速发展,氮化镓高电子迁移率晶体管(GaN HEMT)已经开始应用在电力电子领域。GaN HEMT以其低寄生参数、无反向恢复损耗、高开通速度等特点,可降低开关管的开关损耗。本文以600V GaN HEMT为研究对象,研究其共源共栅(Cascode)结构引起的开关动态过程及其寄生参数的影响。建立了600V GaN HEMT等效模型并详细推导了其在单相逆变器中开关管正向导通、正向关断、反向续流导通和反向续流关断四种情况的动态过程。GaN HEMT的等效电路考虑了对开关过程及开关损耗有重要影响的寄生电感和寄生电容。理论、仿真及实验证明了Cascode GaN HEMT器件中寄生电感L_(int1)、L_(int3)和L_S直接影响开关管的动态过程进而影响开关管的开关损耗。展开更多
碳化硅金属氧化物半导体场效应管(Si C MOSFET)和氮化镓高电子迁移率晶体管(GaN HEMT)这两种器件内部存在容易捕获电子的"陷阱",会影响导电沟道的性能,进而影响器件的导通电阻。对SiC MOSFET和GaN HEMT各选取了一款典型的商...碳化硅金属氧化物半导体场效应管(Si C MOSFET)和氮化镓高电子迁移率晶体管(GaN HEMT)这两种器件内部存在容易捕获电子的"陷阱",会影响导电沟道的性能,进而影响器件的导通电阻。对SiC MOSFET和GaN HEMT各选取了一款典型的商用器件,分别对Si C MOSFET和GaN HEMT的导通电阻可靠性进行了测试。测试结果表明,Si C MOSFET的导通电阻变化量相对小,且应力停止后导通电阻可以恢复到初始状态,这说明其界面态陷阱密度比GaN HEMT更低,因此实际应用中无需考虑导通电阻的稳定性;而GaN HEMT的动态电阻变化较大,这极大地增加了导通损耗,影响系统的可靠性,因此在实际应用中需要考虑导通电阻变化对导通性能的影响。展开更多
文摘近年来随着氮化镓器件制造工艺的迅速发展,氮化镓高电子迁移率晶体管(GaN HEMT)已经开始应用在电力电子领域。GaN HEMT以其低寄生参数、无反向恢复损耗、高开通速度等特点,可降低开关管的开关损耗。本文以600V GaN HEMT为研究对象,研究其共源共栅(Cascode)结构引起的开关动态过程及其寄生参数的影响。建立了600V GaN HEMT等效模型并详细推导了其在单相逆变器中开关管正向导通、正向关断、反向续流导通和反向续流关断四种情况的动态过程。GaN HEMT的等效电路考虑了对开关过程及开关损耗有重要影响的寄生电感和寄生电容。理论、仿真及实验证明了Cascode GaN HEMT器件中寄生电感L_(int1)、L_(int3)和L_S直接影响开关管的动态过程进而影响开关管的开关损耗。
基金Supported by the National Natural Science Foundation of China(61822407,62074161,62004213)the National Key Research and De-velopment Program of China under(2018YFE0125700)。
文摘碳化硅金属氧化物半导体场效应管(Si C MOSFET)和氮化镓高电子迁移率晶体管(GaN HEMT)这两种器件内部存在容易捕获电子的"陷阱",会影响导电沟道的性能,进而影响器件的导通电阻。对SiC MOSFET和GaN HEMT各选取了一款典型的商用器件,分别对Si C MOSFET和GaN HEMT的导通电阻可靠性进行了测试。测试结果表明,Si C MOSFET的导通电阻变化量相对小,且应力停止后导通电阻可以恢复到初始状态,这说明其界面态陷阱密度比GaN HEMT更低,因此实际应用中无需考虑导通电阻的稳定性;而GaN HEMT的动态电阻变化较大,这极大地增加了导通损耗,影响系统的可靠性,因此在实际应用中需要考虑导通电阻变化对导通性能的影响。