This paper proposes an adaptive localization approach for wireless sensor networks based on Gauss-Markov mobility model. In the approach,the perpendicular bisector strategy,the virtual repulsive strategy,and the veloc...This paper proposes an adaptive localization approach for wireless sensor networks based on Gauss-Markov mobility model. In the approach,the perpendicular bisector strategy,the virtual repulsive strategy,and the velocity adjustment strategy are properly combined to enhance localization effciency. The velocity adjustment strategy causes that the mobile anchor node automatically tunes its velocity. The perpendicular bisector strategy locally adjusts trajectory for the mobile anchor node,which ensures that unknown nodes obtain enough non-collinear anchor coordinates as soon as possible. The virtual repulsive strategy impels that the mobile anchor node rapidly leaves the communication range of location-aware nodes or returns to the surveillance region after the mobile anchor node was out of the boundary. Both theoretical analysis and simulation studies show that this approach can increase localization accuracy,consume less energy,and cover more surveillance region during the same period than virtual beacons-energy ratios localization scheme using the Gauss-Markov mobility model.展开更多
传统的高斯混合模型(Gaussian mixture model,GMM)算法在图像分割中未考虑像素的空间信息,导致其对于噪声十分敏感.马尔科夫随机场(Markov random field,MRF)模型通过像素类别标记的Gibbs分布先验概率引入了图像的空间信息,能较好地分...传统的高斯混合模型(Gaussian mixture model,GMM)算法在图像分割中未考虑像素的空间信息,导致其对于噪声十分敏感.马尔科夫随机场(Markov random field,MRF)模型通过像素类别标记的Gibbs分布先验概率引入了图像的空间信息,能较好地分割含有噪声的图像,然而MRF模型的分割结果容易出现过平滑现象.为了解决上述缺陷,提出了一种新的基于图像片权重方法的马尔科夫随机场图像分割模型,对邻域内的不同图像片根据相似度赋予不同的权重,使其在克服噪声影响的同时能保持图像细节信息.同时,采用KL距离引入先验概率与后验概率关于熵的惩罚项,并对该惩罚项进行平滑,得到最终的分割结果.实验结果表明,算法具有较强的自适应性,能够有效克服噪声对于分割结果的影响,并获得较高的分割精度.展开更多
基金Supported by National Natural Science Foundation of China(60776834, 60870010)
文摘This paper proposes an adaptive localization approach for wireless sensor networks based on Gauss-Markov mobility model. In the approach,the perpendicular bisector strategy,the virtual repulsive strategy,and the velocity adjustment strategy are properly combined to enhance localization effciency. The velocity adjustment strategy causes that the mobile anchor node automatically tunes its velocity. The perpendicular bisector strategy locally adjusts trajectory for the mobile anchor node,which ensures that unknown nodes obtain enough non-collinear anchor coordinates as soon as possible. The virtual repulsive strategy impels that the mobile anchor node rapidly leaves the communication range of location-aware nodes or returns to the surveillance region after the mobile anchor node was out of the boundary. Both theoretical analysis and simulation studies show that this approach can increase localization accuracy,consume less energy,and cover more surveillance region during the same period than virtual beacons-energy ratios localization scheme using the Gauss-Markov mobility model.
文摘传统的高斯混合模型(Gaussian mixture model,GMM)算法在图像分割中未考虑像素的空间信息,导致其对于噪声十分敏感.马尔科夫随机场(Markov random field,MRF)模型通过像素类别标记的Gibbs分布先验概率引入了图像的空间信息,能较好地分割含有噪声的图像,然而MRF模型的分割结果容易出现过平滑现象.为了解决上述缺陷,提出了一种新的基于图像片权重方法的马尔科夫随机场图像分割模型,对邻域内的不同图像片根据相似度赋予不同的权重,使其在克服噪声影响的同时能保持图像细节信息.同时,采用KL距离引入先验概率与后验概率关于熵的惩罚项,并对该惩罚项进行平滑,得到最终的分割结果.实验结果表明,算法具有较强的自适应性,能够有效克服噪声对于分割结果的影响,并获得较高的分割精度.