期刊文献+

基于图像片马尔科夫随机场的脑MR图像分割算法 被引量:28

Brain MR Image Segmentation Algorithm Based on Markov Random Field with Image Patch
在线阅读 下载PDF
导出
摘要 传统的高斯混合模型(Gaussian mixture model,GMM)算法在图像分割中未考虑像素的空间信息,导致其对于噪声十分敏感.马尔科夫随机场(Markov random field,MRF)模型通过像素类别标记的Gibbs分布先验概率引入了图像的空间信息,能较好地分割含有噪声的图像,然而MRF模型的分割结果容易出现过平滑现象.为了解决上述缺陷,提出了一种新的基于图像片权重方法的马尔科夫随机场图像分割模型,对邻域内的不同图像片根据相似度赋予不同的权重,使其在克服噪声影响的同时能保持图像细节信息.同时,采用KL距离引入先验概率与后验概率关于熵的惩罚项,并对该惩罚项进行平滑,得到最终的分割结果.实验结果表明,算法具有较强的自适应性,能够有效克服噪声对于分割结果的影响,并获得较高的分割精度. Without considering the spatial information between pixels, the traditional Gaussian mixture model (GMM) Mgorithm is very sensitive to noise during image segmentation. Markov random field (MRF) models provide a powerful way to noisy images through Gibbs joint probability distribution which introduce the spatial information of images. However, they often lead to over-smoothing. To overcome these drawbacks, we propose a new brain MR image segmentation algorithm based on MRF with image patch by assigniag each pixel in the neighborhood with a different weight according to the similarity between image patches. The proposed method can overcome the noise and keep the details of topology and corner regions. Meanwhile, by introducing the KL distance into the prior probability and posterior probability as an entropy penalty, the proposed algorithm could get better segmentation results through smoothing this penalty term. Experimental results show that our algorithm can overcome the impact of noise on the segmentation results adaptively and efficiently, and get accurate segmentation results.
出处 《自动化学报》 EI CSCD 北大核心 2014年第8期1754-1763,共10页 Acta Automatica Sinica
基金 国家自然科学基金(61273251)资助~~
关键词 脑MR图像 图像分割 图像片 高斯混合模型 马尔科夫随机场 Brain MR images, image segmentation, image patch, Gaussian mixture model (GMM), Markov randomfield (MRF)
作者简介 宋艳涛 南京理工大学计算机学院博士研究生.主要研究方向为医学图像处理,模式识别.E-maihyantaosong@hotmail.com 纪则轩 南京理工大学计算机学院讲师.主要研究方向为模式识别与医学图像处理.E-maihjizexuan@hotmail.com 孙权森 南京理工大学计算机学院教授主要研究方向为图像处理与模式以别.E-mail:sunquansen@njust.edu.cn
  • 相关文献

参考文献23

  • 1Verbeek J J, Vlassis N, Krose B. Efficient greedy learning of Gaussian mixture models. Neural Computation, 2003, 15(2): 469-485.
  • 2Redner R A, Walker H F. Mixture densities, maximum like- lihood, and the EM algorithm. Society for Industrial and Applied Mathematics Review, 1984, 26(2): 195-239.
  • 3Nguyen T M, Wu Q M J, Ahuja S. An extension of the stan- dard mixture model for image segmentation. IEEE Trans- actions on Neural Networks, 2010, 21(8): 1326-1338.
  • 4Balarf M A, Ramli A R, Saripan M I, Mashohor S. Review of brain MRI image segmentation methods. Artificial Intel- ligence Review, 2010, 33(3): 261-274.
  • 5Skibbe It, Reisert M, Burkhardt H. Gaussian neighborhood descriptors for brain segmentation. In: Proceedings of the 2011 Machine Vision Applications. Nara, Japan: Nara Cen- tennial Hall, 2011. ,35-38.
  • 6Geman S, Geman D. Stochastic relaxation, Gibbs distribu- tions, and the Bayesian restoration of images. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721-741.
  • 7Besag J. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, 1986, 48(3): 259-302.
  • 8Diplaros A, Vlassis N, Gevers T. A spatially constrained generative model and an EM algorithm for image segmen- tation. Nezlral Networks, 2007, 18(3): 798-808.
  • 9Qian W, Titterington D M. Estimation of parameters in hidden Markov models. Philosophical Transactions of the Royal Society A: Mathematical, Physical And Engineering Sciences, 1991, 337(1647): 407-428.
  • 10Zhang Y, Brady M, Smith S. Segmentation of brain MR im- ages through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 2001, 20(1): 45-57.

二级参考文献12

  • 1屈微,刘贺平,张海军.基于KL散度的支持向量机方法及应用研究[J].信息与控制,2005,34(5):627-630. 被引量:2
  • 2胡日勒,宗成庆,徐波.基于统计学习的机器翻译模板自动获取方法[J].中文信息学报,2005,19(6):1-6. 被引量:7
  • 3Kullback S, Leibler R A. On information and sufficiency. The Annals of Mathematical Statistics, 1951,22(1): 79-86
  • 4Cover T M, Thomas J A. Elements of Information Theory. New York: Wiley-Interscience,1991
  • 5Do M N, Vetterli M. Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance. IEEE Transactions on Image Processing,2002,11(2): 146-158
  • 6Smyth P. Clustering sequences using hidden Markov models. In: Advances in Neural Information Processing Systems. Cambridge,MA: MIT Press, 1997. 648-654
  • 7Chretien S, Hero A O III. Kullback proximal algorithms for maximum-likelihood estimation. IEEE Transactions on Information Theory, 2000, 46(5): 1800--1810
  • 8Du J, Liu P, Soong F K, Zhou J L, Wang R H. Minimum divergence based discriminative training. In: Proceedings of the 9th International Conference on Spoken Language Processing. Pittsburgh, Pennsylvania: 2006. 1030-1033
  • 9Geman S, Geman D. Stochastic relaxation, Gibbs distribution and Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6(6): 721-741
  • 10Singer Y, Warmuth M K. Batch and on-line parameter estimation of Gaussian mixtures based on the joint entropy. In: Proceedings of the 1998 Conference on Adwnces in Neural Information Processing Systems Ⅱ. Cambridge, USA: MIT Press. 1998. 578-584

共引文献16

同被引文献190

引证文献28

二级引证文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部