随着锂离子电池的广泛应用,电池功率状态(state of power,SOP)预测作为保障电池高效、安全运行的关键技术,其重要性日益凸显。本文系统综述了SOP预测方法,对查表法、机理模型法、等效电路模型法和数据驱动法四类方法进行了梳理,并对模组...随着锂离子电池的广泛应用,电池功率状态(state of power,SOP)预测作为保障电池高效、安全运行的关键技术,其重要性日益凸显。本文系统综述了SOP预测方法,对查表法、机理模型法、等效电路模型法和数据驱动法四类方法进行了梳理,并对模组SOP预测进行了探讨。查表法简单直接,但需要多次充放电实验、时间成本较高、使用工况单一;机理模型法基于多孔电极理论和浓溶液理论,通过偏微分方程精确描述电池内部反应机制,可对电池内部参数进行考量,但计算复杂度高;等效电路模型法采用电路元件模拟电池动态响应,易与电压、电流、荷电状态等参数约束结合,兼顾精度与计算效率;数据驱动法利用机器学习算法直接从运行数据构建SOP预测模型,或结合传统机理模型构建混合模型实施SOP预测,预测性能依赖于数据质量和数量。在模组SOP预测方面,重点阐述了电池不一致性对模组功率的影响,并对其解决思路进行了分析。最后,对现有挑战和未来发展方向进行总结。当前SOP预测技术仍面临四个主要挑战:一是应用于储能场景时存在局限性;二是预测精度和计算效率难以满足应用需求;三是电池老化过程中易发生模型失配问题,影响预测精度;四是模组层面电池一致性差异,增加了预测难度。为应对上述挑战,未来SOP预测技术将朝着高精度建模和求解策略优化、模型参数与约束边界动态更新以及“短板电池识别-特征单体建模-模型参数动态更新”等方向发展,为储能系统提供更安全、更高效的电池管理解决方案。展开更多
为了破解低气压下动力锂离子电池热失控预警指标不精准与预警等级不科学的问题,搭建了预警试验平台,试验装置选取UL9540A支持的82 L定容燃烧弹。结果表明,相同荷电状态(State of Charge,SOC)条件下,高SOC电池在低气压环境下的开阀时刻...为了破解低气压下动力锂离子电池热失控预警指标不精准与预警等级不科学的问题,搭建了预警试验平台,试验装置选取UL9540A支持的82 L定容燃烧弹。结果表明,相同荷电状态(State of Charge,SOC)条件下,高SOC电池在低气压环境下的开阀时刻早于常气压。根据锂离子电池灾变过程的紧急程度,提出综合温度(θ_(C))超过自产热隔膜融化、电池正极分解和开阀放气温度以及电压(U)第一次骤降10%作为热失控预警的判定条件。通过皮尔逊相关系数法,筛选出池体安全阀口温度(θ_(2))、池体正极侧中心温度(θ_(4))、电压(U)和气压(p)四个预警指标构建多元动态预警方法,可科学预测单体三元动力锂离子电池热失控从自产热到热失控的危险过程,为低气压下动力锂离子电池安全应用提供理论和技术支撑。展开更多
文摘随着锂离子电池的广泛应用,电池功率状态(state of power,SOP)预测作为保障电池高效、安全运行的关键技术,其重要性日益凸显。本文系统综述了SOP预测方法,对查表法、机理模型法、等效电路模型法和数据驱动法四类方法进行了梳理,并对模组SOP预测进行了探讨。查表法简单直接,但需要多次充放电实验、时间成本较高、使用工况单一;机理模型法基于多孔电极理论和浓溶液理论,通过偏微分方程精确描述电池内部反应机制,可对电池内部参数进行考量,但计算复杂度高;等效电路模型法采用电路元件模拟电池动态响应,易与电压、电流、荷电状态等参数约束结合,兼顾精度与计算效率;数据驱动法利用机器学习算法直接从运行数据构建SOP预测模型,或结合传统机理模型构建混合模型实施SOP预测,预测性能依赖于数据质量和数量。在模组SOP预测方面,重点阐述了电池不一致性对模组功率的影响,并对其解决思路进行了分析。最后,对现有挑战和未来发展方向进行总结。当前SOP预测技术仍面临四个主要挑战:一是应用于储能场景时存在局限性;二是预测精度和计算效率难以满足应用需求;三是电池老化过程中易发生模型失配问题,影响预测精度;四是模组层面电池一致性差异,增加了预测难度。为应对上述挑战,未来SOP预测技术将朝着高精度建模和求解策略优化、模型参数与约束边界动态更新以及“短板电池识别-特征单体建模-模型参数动态更新”等方向发展,为储能系统提供更安全、更高效的电池管理解决方案。
文摘为了破解低气压下动力锂离子电池热失控预警指标不精准与预警等级不科学的问题,搭建了预警试验平台,试验装置选取UL9540A支持的82 L定容燃烧弹。结果表明,相同荷电状态(State of Charge,SOC)条件下,高SOC电池在低气压环境下的开阀时刻早于常气压。根据锂离子电池灾变过程的紧急程度,提出综合温度(θ_(C))超过自产热隔膜融化、电池正极分解和开阀放气温度以及电压(U)第一次骤降10%作为热失控预警的判定条件。通过皮尔逊相关系数法,筛选出池体安全阀口温度(θ_(2))、池体正极侧中心温度(θ_(4))、电压(U)和气压(p)四个预警指标构建多元动态预警方法,可科学预测单体三元动力锂离子电池热失控从自产热到热失控的危险过程,为低气压下动力锂离子电池安全应用提供理论和技术支撑。