为高精度地开展地下水污染溯源辨识,在对污染源参数进行敏感性分析的基础上,研究应用两阶段马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法辨识确定污染源参数;同时,探索应用多层感知机(Multi-layer Perceptron,MLP)方法构建...为高精度地开展地下水污染溯源辨识,在对污染源参数进行敏感性分析的基础上,研究应用两阶段马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法辨识确定污染源参数;同时,探索应用多层感知机(Multi-layer Perceptron,MLP)方法构建地下水污染运移数值模型的代理模型,用以提高地下水污染溯源辨识的效率。为验证上述方法的有效性和可行性,开展了两个数值算例研究。结果表明:采用MLP方法构建的代理模型对地下水污染运移数值模型的逼近精度高,不仅能够有效提升地下水污染溯源辨识效率,还能保持良好的计算精度;所提出的耦合敏感性分析与两阶段MCMC算法能够显著提升低敏感性污染源参数的辨识精度。展开更多
马尔科夫链蒙特卡洛MCMC(Markov Chain Monte Carlo)算法广泛应用于地球系统模型中参数不确定性分析和模拟。由于地球环境科学数据的高维度、大容量特性,迫切需求高性能的MCMC算法满足应用需求。采用数据分治法实现该算法的多核并行化...马尔科夫链蒙特卡洛MCMC(Markov Chain Monte Carlo)算法广泛应用于地球系统模型中参数不确定性分析和模拟。由于地球环境科学数据的高维度、大容量特性,迫切需求高性能的MCMC算法满足应用需求。采用数据分治法实现该算法的多核并行化。利用静态和动态分配策略将算法中的多个输入链分配到各CPU;独立计算并通过共享内存实现进程间通信;主进程回收各单元计算结果,合成最终的马尔可夫链输出矩阵。采用控制变量法分析不同样本和马尔可夫链数量下的算法加速情况。结果表明在计算规模较大、动态负载均衡的条件下易于获得较好的加速比,在4个CPU以内时效果显著,之后随着CPU增加加速效果出现波动或趋于稳定。研究表明并行化MCMC能够利用多核CPU硬件设施获得加速效果,更多核数的加速性能存在进一步优化的空间。展开更多
针对传统马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)模拟方法在高维问题或后验概率密度复杂时采样效率低且难收敛的缺陷,建立了基于马尔科夫(Markov)链种群竞争的贝叶斯有限元模型修正算法。在基于Metropolis-Hastings(MH)随...针对传统马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)模拟方法在高维问题或后验概率密度复杂时采样效率低且难收敛的缺陷,建立了基于马尔科夫(Markov)链种群竞争的贝叶斯有限元模型修正算法。在基于Metropolis-Hastings(MH)随机游走算法实现MCMC模拟的传统方法基础上,引入差分进化算法,利用种群中Markov链之间不同携带信息的相互作用关系,得到优化建议以快速逼近目标函数,解决了高维参数模型修正过程中采样滞留的缺点;引进竞争算法,通过不断的竞争刺激和内置失败者向胜利者学习的机制,采用较少的Markov链获得较高的精度,提高了模型修正效率与精度;最后,通过一个桁架结构的有限元模型修正数值算例验证了所提算法,并与标准MH算法的结果对比,得出该算法可以快速修正高维参数模型,具有较高的精度,且对随机噪声有良好的鲁棒性,为考虑不确定性的大型结构有限元模型修正提供了一种稳定有效的手段。展开更多
文摘为高精度地开展地下水污染溯源辨识,在对污染源参数进行敏感性分析的基础上,研究应用两阶段马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)算法辨识确定污染源参数;同时,探索应用多层感知机(Multi-layer Perceptron,MLP)方法构建地下水污染运移数值模型的代理模型,用以提高地下水污染溯源辨识的效率。为验证上述方法的有效性和可行性,开展了两个数值算例研究。结果表明:采用MLP方法构建的代理模型对地下水污染运移数值模型的逼近精度高,不仅能够有效提升地下水污染溯源辨识效率,还能保持良好的计算精度;所提出的耦合敏感性分析与两阶段MCMC算法能够显著提升低敏感性污染源参数的辨识精度。
文摘马尔科夫链蒙特卡洛MCMC(Markov Chain Monte Carlo)算法广泛应用于地球系统模型中参数不确定性分析和模拟。由于地球环境科学数据的高维度、大容量特性,迫切需求高性能的MCMC算法满足应用需求。采用数据分治法实现该算法的多核并行化。利用静态和动态分配策略将算法中的多个输入链分配到各CPU;独立计算并通过共享内存实现进程间通信;主进程回收各单元计算结果,合成最终的马尔可夫链输出矩阵。采用控制变量法分析不同样本和马尔可夫链数量下的算法加速情况。结果表明在计算规模较大、动态负载均衡的条件下易于获得较好的加速比,在4个CPU以内时效果显著,之后随着CPU增加加速效果出现波动或趋于稳定。研究表明并行化MCMC能够利用多核CPU硬件设施获得加速效果,更多核数的加速性能存在进一步优化的空间。
文摘针对传统马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)模拟方法在高维问题或后验概率密度复杂时采样效率低且难收敛的缺陷,建立了基于马尔科夫(Markov)链种群竞争的贝叶斯有限元模型修正算法。在基于Metropolis-Hastings(MH)随机游走算法实现MCMC模拟的传统方法基础上,引入差分进化算法,利用种群中Markov链之间不同携带信息的相互作用关系,得到优化建议以快速逼近目标函数,解决了高维参数模型修正过程中采样滞留的缺点;引进竞争算法,通过不断的竞争刺激和内置失败者向胜利者学习的机制,采用较少的Markov链获得较高的精度,提高了模型修正效率与精度;最后,通过一个桁架结构的有限元模型修正数值算例验证了所提算法,并与标准MH算法的结果对比,得出该算法可以快速修正高维参数模型,具有较高的精度,且对随机噪声有良好的鲁棒性,为考虑不确定性的大型结构有限元模型修正提供了一种稳定有效的手段。