针对传统的基于马尔可夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)的自适应重要抽样法只适用于失效边界确定的系统,而不适用于失效域模糊的渐变结构系统问题,提出基于MCMC的模糊自适应重要抽样法。首先从模糊失效域内的某个初始点出发...针对传统的基于马尔可夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)的自适应重要抽样法只适用于失效边界确定的系统,而不适用于失效域模糊的渐变结构系统问题,提出基于MCMC的模糊自适应重要抽样法。首先从模糊失效域内的某个初始点出发,根据Metropolis准则构造马尔可夫模拟样本点;然后利用自适应核密度估计构建核抽样概率密度函数并进行重要抽样;最后离散化模糊失效域以计算系统的模糊失效概率。该方法合理地解决了以往渐变结构系统性能可靠性难以仿真分析及仿真效率低的难题,具有较高的仿真效率和精度。应用舵机案例对方法的适用性及高效性进行了验证。展开更多
Markov random fields(MRF) have potential for predicting and simulating petroleum reservoir facies more accurately from sample data such as logging, core data and seismic data because they can incorporate interclass re...Markov random fields(MRF) have potential for predicting and simulating petroleum reservoir facies more accurately from sample data such as logging, core data and seismic data because they can incorporate interclass relationships. While, many relative studies were based on Markov chain, not MRF, and using Markov chain model for 3D reservoir stochastic simulation has always been the difficulty in reservoir stochastic simulation. MRF was proposed to simulate type variables(for example lithofacies) in this work. Firstly, a Gibbs distribution was proposed to characterize reservoir heterogeneity for building 3-D(three-dimensional) MRF. Secondly, maximum likelihood approaches of model parameters on well data and training image were considered. Compared with the simulation results of MC(Markov chain), the MRF can better reflect the spatial distribution characteristics of sand body.展开更多
文摘针对传统的基于马尔可夫链蒙特卡罗(Markov chain Monte Carlo,MCMC)的自适应重要抽样法只适用于失效边界确定的系统,而不适用于失效域模糊的渐变结构系统问题,提出基于MCMC的模糊自适应重要抽样法。首先从模糊失效域内的某个初始点出发,根据Metropolis准则构造马尔可夫模拟样本点;然后利用自适应核密度估计构建核抽样概率密度函数并进行重要抽样;最后离散化模糊失效域以计算系统的模糊失效概率。该方法合理地解决了以往渐变结构系统性能可靠性难以仿真分析及仿真效率低的难题,具有较高的仿真效率和精度。应用舵机案例对方法的适用性及高效性进行了验证。
基金Project(2011ZX05002-005-006)supported by the National "Twelveth Five Year" Science and Technology Major Research Program,China
文摘Markov random fields(MRF) have potential for predicting and simulating petroleum reservoir facies more accurately from sample data such as logging, core data and seismic data because they can incorporate interclass relationships. While, many relative studies were based on Markov chain, not MRF, and using Markov chain model for 3D reservoir stochastic simulation has always been the difficulty in reservoir stochastic simulation. MRF was proposed to simulate type variables(for example lithofacies) in this work. Firstly, a Gibbs distribution was proposed to characterize reservoir heterogeneity for building 3-D(three-dimensional) MRF. Secondly, maximum likelihood approaches of model parameters on well data and training image were considered. Compared with the simulation results of MC(Markov chain), the MRF can better reflect the spatial distribution characteristics of sand body.