现代民用飞机须严格按照适航规章要求进行设计,国内现代民用飞机的气动弹性设计参照的适航条款主要为CCAR25.629条款"气动弹性稳定性要求"和咨询通报AC25.629-1A"Aeroelastic Stability Substantiation of Transport Cat...现代民用飞机须严格按照适航规章要求进行设计,国内现代民用飞机的气动弹性设计参照的适航条款主要为CCAR25.629条款"气动弹性稳定性要求"和咨询通报AC25.629-1A"Aeroelastic Stability Substantiation of Transport Category Airplane"。低速颤振模型风洞试验是飞机气动弹性设计中的一种有效技术手段,用以摸清飞机的亚音速颤振特性、影响颤振特性的敏感参数及其影响规律,并验证理论分析结果;低速颤振模型风洞试验同时也是民用飞机适航符合性的一种验证方法,用以表明飞机气动弹性设计的适航符合性。结合某型号飞机研制经验对民用飞机低速颤振模型风洞试验的适航符合性验证技术进行探讨研究,提出了切实可行的民用飞机低速颤振模型风洞试验适航符合性设计和验证方案。展开更多
The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which compris...The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which comprises an aerodynamic part to calculate the aerodynamic loads and a structural part to determine the structural dynamic responses, is established to describe the classical flutter of the blades. For the aerodynamic part, Theodorsen unsteady aerodynamics model is used. For the structural part, Lagrange’s equation is employed. The flutter speed is determined by introducing “V–g” method to the aeroelastic model, which converts the issue of classical flutter speed determination into an eigenvalue problem. Furthermore, the time domain aeroelastic response of the wind turbine blade section is obtained with employing Runge-Kutta method. The results show that four cases (i.e., reducing the blade torsional stiffness, moving the center of gravity or the elastic axis towards the trailing edge of the section, and placing the turbine in high air density area) will decrease the flutter speed. Therefore, the judicious selection of the four parameters (the torsional stiffness, the chordwise position of the center of gravity, the elastic axis position and air density) can increase the relative inflow speed at the blade section associated with the onset of flutter.展开更多
文摘现代民用飞机须严格按照适航规章要求进行设计,国内现代民用飞机的气动弹性设计参照的适航条款主要为CCAR25.629条款"气动弹性稳定性要求"和咨询通报AC25.629-1A"Aeroelastic Stability Substantiation of Transport Category Airplane"。低速颤振模型风洞试验是飞机气动弹性设计中的一种有效技术手段,用以摸清飞机的亚音速颤振特性、影响颤振特性的敏感参数及其影响规律,并验证理论分析结果;低速颤振模型风洞试验同时也是民用飞机适航符合性的一种验证方法,用以表明飞机气动弹性设计的适航符合性。结合某型号飞机研制经验对民用飞机低速颤振模型风洞试验的适航符合性验证技术进行探讨研究,提出了切实可行的民用飞机低速颤振模型风洞试验适航符合性设计和验证方案。
基金Project(2015B37714)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(51605005)supported by the National Natural Science Foundation of China+1 种基金Project(ZK16-03-03)supported by the Open Foundation of Jiangsu Wind Technology Center,ChinaProject([2013]56)supported by the First Group of 2011 Plan of Jiangsu Province,China
文摘The parameter sensitivities affecting the flutter speed of the NREL (National Renewable Energy Laboratory) 5-MW baseline HAWT (horizontal axis wind turbine) blades are analyzed. An aeroelastic model, which comprises an aerodynamic part to calculate the aerodynamic loads and a structural part to determine the structural dynamic responses, is established to describe the classical flutter of the blades. For the aerodynamic part, Theodorsen unsteady aerodynamics model is used. For the structural part, Lagrange’s equation is employed. The flutter speed is determined by introducing “V–g” method to the aeroelastic model, which converts the issue of classical flutter speed determination into an eigenvalue problem. Furthermore, the time domain aeroelastic response of the wind turbine blade section is obtained with employing Runge-Kutta method. The results show that four cases (i.e., reducing the blade torsional stiffness, moving the center of gravity or the elastic axis towards the trailing edge of the section, and placing the turbine in high air density area) will decrease the flutter speed. Therefore, the judicious selection of the four parameters (the torsional stiffness, the chordwise position of the center of gravity, the elastic axis position and air density) can increase the relative inflow speed at the blade section associated with the onset of flutter.