期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
EMD与NARX神经网络的风电场总功率组合预测 被引量:6
1
作者 张振华 马超 +1 位作者 徐瑾辉 欧阳泽拯 《计算机工程与应用》 CSCD 北大核心 2016年第12期265-270,共6页
探索构建对风电场总功率进行直接预测的高精度组合预测算法。考虑到风速的非平稳性导致风电总功率表现为非平稳时间序列,采用NARX神经网络作为初步预测模型,提出了经验模态分解与NARX神经网络相结合的混合预测模型。对风电场总功率非平... 探索构建对风电场总功率进行直接预测的高精度组合预测算法。考虑到风速的非平稳性导致风电总功率表现为非平稳时间序列,采用NARX神经网络作为初步预测模型,提出了经验模态分解与NARX神经网络相结合的混合预测模型。对风电场总功率非平稳时间序列进行经验模态分解,得到不同频带本征模式分量的平稳序列。对不同频带的平稳分量建立相应的NARX神经网络预测模型,并将各分量模型的预测值进行等权求和得到最终预测值。此外,为研究不同时间间隔对预测结果的影响,采用某大型风电场时间间隔为5 min与15 min的数据进行实验。预测结果表明,提出的组合预测模型适合于总功率预测,其预测效果比传统模型的效果更佳,且时间间隔为5 min的数据比时间间隔为15 min的数据预测精度更高。 展开更多
关键词 经验模态分解 非线性自回归神经网络(带外部输入的)(NARX) 非平稳时间序列 风电场 总功率
在线阅读 下载PDF
可重构功放的新颖NARX神经网络逆向建模研究 被引量:1
2
作者 南敬昌 臧净 +1 位作者 高明明 胡婷婷 《微波学报》 CSCD 北大核心 2019年第5期51-56,共6页
针对使用CAD软件设计射频微波电路繁琐且耗时长等缺点,提出一种新颖的带外部输入的非线性自回归(NARX)神经网络逆向建模方法。此方法采用具有激励函数的NARX神经网络(DAFNN)为模型以提高网络的泛化能力,利用支持向量机(SVM)替代模型的... 针对使用CAD软件设计射频微波电路繁琐且耗时长等缺点,提出一种新颖的带外部输入的非线性自回归(NARX)神经网络逆向建模方法。此方法采用具有激励函数的NARX神经网络(DAFNN)为模型以提高网络的泛化能力,利用支持向量机(SVM)替代模型的前馈部分完成数据分类,解决设计中的多解问题。然后应用于可以覆盖多个频段的可重构功率放大器中,实验表明,该方法在精度方面分别优于直接逆向建模方法和自适应η逆向建模方法99.86%和81.32%,计算速度方面优于直接逆向建模方法31.72%,可以降低射频微波可重构功率放大器的设计复杂度、缩短其设计时间。 展开更多
关键词 外部输入非线性自回归(NARX)神经网络 逆向建模 DAFNN神经元模型 支持向量机 可重构功率放大器
在线阅读 下载PDF
激励函数可调的NARX神经网络 被引量:1
3
作者 李明 杨成梧 《江南大学学报(自然科学版)》 CAS 2006年第4期445-448,共4页
提出了一种隐层神经元激励函数可调的具有外部输入的非线性回归(NARX)神经网络,它在进行权值调整的同时,还对各隐层神经元激励函数的参数进行自适应调节;并推导出激励函数参数的学习算法,从而使NARX神经网络更符合生物神经网络.通过系... 提出了一种隐层神经元激励函数可调的具有外部输入的非线性回归(NARX)神经网络,它在进行权值调整的同时,还对各隐层神经元激励函数的参数进行自适应调节;并推导出激励函数参数的学习算法,从而使NARX神经网络更符合生物神经网络.通过系统辨识的仿真实例,说明了隐层神经元激励函数对网络性能的影响,还验证了文中提出的NARX神经网络具有更快的收敛速度,并且能有效地避免算法陷入局部最小. 展开更多
关键词 具有外部输入非线性回归神经网络 激励函数 学习算法
在线阅读 下载PDF
数据驱动的水泥立磨系统出风口温度预测研究
4
作者 吕景祥 叶建辉 +3 位作者 石洋 刘清涛 马玉钦 张得洋 《安全与环境学报》 北大核心 2025年第4期1633-1642,共10页
水泥生产立磨出风口温度是判断立磨运行状态是否安全稳定的关键参数,对该参数提前预测可以减少立磨振动,提高运行稳定性,增加产量,降低能耗及相关碳排放。水泥立磨系统具有多参数、大时滞和非线性等复杂特性。针对上述问题,提出了基于... 水泥生产立磨出风口温度是判断立磨运行状态是否安全稳定的关键参数,对该参数提前预测可以减少立磨振动,提高运行稳定性,增加产量,降低能耗及相关碳排放。水泥立磨系统具有多参数、大时滞和非线性等复杂特性。针对上述问题,提出了基于互相关延时分析优化的非线性自回归外部输入(Nonlinear AutoRegressive with eXogenous inputs,NARX)神经网络,并用于立磨出风口温度预测。首先,采用皮尔逊相关性分析从多个参数中确定影响立磨出风口温度的关键参数。同时,利用互相关延时分析进行时滞分析,解决大时滞问题。其次,通过优化的NARX神经网络,实现非线性工况下温度的精准预测。案例验证结果表明,所提出模型的拟合度达到了0.99967,均方误差为0.56483,预测精度达到了98.4%以上。预测模型结果可指导立磨操作人员及时控制立磨振动,提高水泥产量并降低能耗和碳排放。 展开更多
关键词 环境工程学 数据驱动 皮尔逊相关性分析 延时分析 非线性自回归外部输入神经网络
在线阅读 下载PDF
电磁发射系统监测量预测方法 被引量:5
5
作者 腾腾 赵治华 《电工技术学报》 EI CSCD 北大核心 2018年第22期5233-5243,共11页
对设备监测量的数值预测是进行故障预测与健康管理(PHM)研究的重要环节之一。以电磁发射系统中分段供电直线电机的定子温度为例,分别基于自回归积分滑动平均(ARIMA)模型、卡尔曼滤波模型、反向传播(BP)神经网络模型和一种新的以工况信... 对设备监测量的数值预测是进行故障预测与健康管理(PHM)研究的重要环节之一。以电磁发射系统中分段供电直线电机的定子温度为例,分别基于自回归积分滑动平均(ARIMA)模型、卡尔曼滤波模型、反向传播(BP)神经网络模型和一种新的以工况信息为外部输入的非线性自回归神经网络(NARX)模型,实现了对定子温度多时间尺度的预测。ARIMA模型为其他三种模型提供了时序数据分析时确定阶数的依据。在不同于训练数据集的试验数据上应用四种预测模型,比较和分析了四种方法得到的多时间尺度预测结果:对于不超过1min的短时温度预测,四种方法都具有较好的效果;对于1~4min的中长时间预测,引入工况信息的NARX神经网络方法具有优势。四种方法对分段供电直线电机定子温度预测都不具有超过4min的预测能力。 展开更多
关键词 电磁发射系统 分段供电直线电机 监测量预测 外部输入非线性自回归神经网络 工况信息
在线阅读 下载PDF
基于履带车辆车体动态响应的行驶路面不平度识别 被引量:3
6
作者 凌启辉 戴巨川 +3 位作者 陈盛钊 孙飞鹰 汪国胜 廖力力 《中国机械工程》 EI CAS CSCD 北大核心 2022年第1期62-69,共8页
建立了基于履带车辆车体动态响应的行驶路面不平度识别的模型。该模型采用带外源输入的非线性自回归神经网络结构,以履带车辆车体动态响应为输入、路面不平度为输出。将相关性系数、均方根误差和绝对误差累计概率密度作为识别效果的评... 建立了基于履带车辆车体动态响应的行驶路面不平度识别的模型。该模型采用带外源输入的非线性自回归神经网络结构,以履带车辆车体动态响应为输入、路面不平度为输出。将相关性系数、均方根误差和绝对误差累计概率密度作为识别效果的评价指标,并给出了上述三个指标的融合方法。基于正交试验设计的思路分析并实现了路面不平度识别模型输入数量和识别效果的平衡,简化了测试系统传感器的布置。分析了不同的路面、采样频率和车速下的路面不平度识别效果。结果表明,提出的不平度识别方法满足工程实际需求。 展开更多
关键词 履带车辆 路面不平度识别 动态响应 带外源输入非线性自回归神经网络
在线阅读 下载PDF
一种变步长CMAC的沉降NARMAX模型
7
作者 王华秋 《计算机应用研究》 CSCD 北大核心 2011年第4期1368-1371,1377,共5页
为了提高氧化铝生产质量和降低能耗,分析了氧化铝沉降工艺中影响沉降过程的各种因素,采用小脑模型神经网络(CMAC)系统辨识的方法建立沉降系统的带外部输入的自回归滑移模型(ARMAX)。针对CMAC收敛性存在的问题,提出了基于变步长小脑模型... 为了提高氧化铝生产质量和降低能耗,分析了氧化铝沉降工艺中影响沉降过程的各种因素,采用小脑模型神经网络(CMAC)系统辨识的方法建立沉降系统的带外部输入的自回归滑移模型(ARMAX)。针对CMAC收敛性存在的问题,提出了基于变步长小脑模型神经网络(CMAC)算法,通过双曲正割函数优化学习步长,提高了小脑模型神经网络算法的收敛速度和计算精度,进而优化了沉降槽密度ARMAX模型。仿真实验表明,该算法的ARMAX模型可以对沉降过程中的槽内密度进行准确识别,指导氧化铝的沉降生产操作。 展开更多
关键词 沉降 外部输入自回归滑移 变步长小脑模型神经网络 系统辨识
在线阅读 下载PDF
压电作动器的支持向量机迟滞模型 被引量:8
8
作者 严秀权 吴洪涛 +2 位作者 李耀 杨小龙 康升征 《仪器仪表学报》 EI CAS CSCD 北大核心 2018年第9期228-235,共8页
压电作动器被广泛应用于高精度定位领域,但是其固有的迟滞非线性会严重影响定位精度。为了准确地描述压电作动器的迟滞特性,提出了一种基于非线性自回归移动平均(NARMAX)的支持向量机(SVM)迟滞模型。为了建立SVM迟滞模型,首先需要... 压电作动器被广泛应用于高精度定位领域,但是其固有的迟滞非线性会严重影响定位精度。为了准确地描述压电作动器的迟滞特性,提出了一种基于非线性自回归移动平均(NARMAX)的支持向量机(SVM)迟滞模型。为了建立SVM迟滞模型,首先需要将压电作动器的输入输出关系从一个多值映射问题转化为单值映射问题,对比了不同的单值映射对SVM迟滞模型精度及泛化能力的影响,提出了一种基于NARMAX构建单值映射的方法,建立了在全局上具有更高精度的压电作动器SVM迟滞模型。通过减小训练集中所包含输入信号频率的间隔,提高了模型在测试集上的精度。采用交叉验证的方法确定SVM模型中的参数,提高了迟滞模型在全局上的精度和泛化能力。结果表明,相比传统Bouc-Wen模型,所提出的模型在1 Hz处精度提高了8倍,在50 Hz处精度提高了60倍。通过位移跟踪实验,证明了基于SVM迟滞逆模型的前馈+反馈(FF+FB)控制能够有效提高跟踪精度,相较于PID反馈控制,其跟踪误差最多可降低73.9%。 展开更多
关键词 压电作动器 支持向量机 率相关迟滞建模 外部输入非线性自回归移动平均
在线阅读 下载PDF
考虑温度及老化的储能用锂离子电池组荷电状态估算算法
9
作者 姬鹏 吕泽旭 《电工技术学报》 2025年第17期5667-5682,共16页
为提高储能用锂离子电池组在不同环境温度及电池老化状态下的荷电状态(SOC)估算精度,提出一种考虑温度及老化的储能用锂离子电池组SOC估算算法。利用带外源性输入的非线性自回归模型(NARX)神经网络来代替传统二阶RC等效电路模型中的RC回... 为提高储能用锂离子电池组在不同环境温度及电池老化状态下的荷电状态(SOC)估算精度,提出一种考虑温度及老化的储能用锂离子电池组SOC估算算法。利用带外源性输入的非线性自回归模型(NARX)神经网络来代替传统二阶RC等效电路模型中的RC回路,根据不同温度、不同老化状态下的实验数据对模型进行训练,进而建立考虑温度和老化影响的电池模型。为解决电池组SOC估算问题,电池组模型选择均值差异模型,通过自适应无迹卡尔曼滤波(AUKF)算法分别计算均值及差异模型SOC,并通过模糊控制计算SOC融合权值,实现电池组SOC融合及估算。最后搭建硬件在环仿真平台,在不同工况下将所提算法与扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)算法进行对比,结果表明所提算法估算精确度更高、鲁棒性更好。 展开更多
关键词 电池组荷电状态(SOC)估算 带外源性输入非线性自回归模型(NARX)神经网络 均值差异模型 自适应无迹卡尔曼(AUKF) 模糊控制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部