复杂设备早期微小故障检测是故障检测与诊断领域的难题,系统状态和参数发生阶跃变化或者缓慢漂移是这类故障的主要特征.本文在正交性原理的基础上,提出一种强跟踪平方根中心差分卡尔曼滤波(Square-root center diference Kalman filter,...复杂设备早期微小故障检测是故障检测与诊断领域的难题,系统状态和参数发生阶跃变化或者缓慢漂移是这类故障的主要特征.本文在正交性原理的基础上,提出一种强跟踪平方根中心差分卡尔曼滤波(Square-root center diference Kalman filter,SR-CDKF),即SSR-CDKF,并将SSR-CDKF应用于复杂设备的早期微小故障检测中.仿真结果表明,SSRCDKF能够更准确地估计系统状态和参数,更迅速地跟踪系统和参数突变情况.通过仿真计算比较滤波器在不同参数取值下的方差值,得出了选择合适参数的方法.最后利用该算法检测出了陀螺仪的早期微小故障.展开更多
This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with...This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with consideration on the factors including the time-varying system stiffness,the transmission error,the tooth backlash and the self-excited excitation of the wheel-set.The frequency-response equation of the system at super-harmonic resonance is obtained by the multiple scales method,and the stabilities of the system are analyzed using the perturbation theory.Complex nonlinear behaviors of the system including multi-valued solutions,jump phenomenon,hardening stiffness are found.The effects of the equivalent damping and the loads of the system under the stick-slip oscillation are analyzed.It shows that the change of the load can obviously influence the resonance frequency of the system and have little effect on the steady-state response amplitude of the system.The damping of the system has a negative effect,opposite to the load.The synthetic damping of the system composed of meshing damping and equivalent damping may be less than zero when the wheel-set has a large slippage,and the system loses its stability owing to the Hopf bifurcation.Analytical results are validated by numerical simulations.展开更多
文摘复杂设备早期微小故障检测是故障检测与诊断领域的难题,系统状态和参数发生阶跃变化或者缓慢漂移是这类故障的主要特征.本文在正交性原理的基础上,提出一种强跟踪平方根中心差分卡尔曼滤波(Square-root center diference Kalman filter,SR-CDKF),即SSR-CDKF,并将SSR-CDKF应用于复杂设备的早期微小故障检测中.仿真结果表明,SSRCDKF能够更准确地估计系统状态和参数,更迅速地跟踪系统和参数突变情况.通过仿真计算比较滤波器在不同参数取值下的方差值,得出了选择合适参数的方法.最后利用该算法检测出了陀螺仪的早期微小故障.
基金Project(U1234208)supported by the National Natural Science Foundation of ChinaProject(2016YFB1200401)supported by the National Key Research and Development Program of China
文摘This work deals with super-harmonic responses and the stabilities of a gear transmission system of a high-speed train under the stick-slip oscillation of the wheel-set.The dynamic model of the system is developed with consideration on the factors including the time-varying system stiffness,the transmission error,the tooth backlash and the self-excited excitation of the wheel-set.The frequency-response equation of the system at super-harmonic resonance is obtained by the multiple scales method,and the stabilities of the system are analyzed using the perturbation theory.Complex nonlinear behaviors of the system including multi-valued solutions,jump phenomenon,hardening stiffness are found.The effects of the equivalent damping and the loads of the system under the stick-slip oscillation are analyzed.It shows that the change of the load can obviously influence the resonance frequency of the system and have little effect on the steady-state response amplitude of the system.The damping of the system has a negative effect,opposite to the load.The synthetic damping of the system composed of meshing damping and equivalent damping may be less than zero when the wheel-set has a large slippage,and the system loses its stability owing to the Hopf bifurcation.Analytical results are validated by numerical simulations.