考虑一类非局部问题{-(a-b integral from Ω|▽u|~2dx)Δu=λg(x)x∈Ω u=0 x∈Ω其中a>0,b>0,ΩR^N是有界开集,λ>0且g∈H^(-1)(Ω)\{0},这里H^(-1)(Ω)是Sobolev空间H_0~1(Ω)的对偶空间.应用Ekeland变分原理和山路引...考虑一类非局部问题{-(a-b integral from Ω|▽u|~2dx)Δu=λg(x)x∈Ω u=0 x∈Ω其中a>0,b>0,ΩR^N是有界开集,λ>0且g∈H^(-1)(Ω)\{0},这里H^(-1)(Ω)是Sobolev空间H_0~1(Ω)的对偶空间.应用Ekeland变分原理和山路引理证明了:存在λ_*>0,使得:(ⅰ)当λ∈(0,λ_*)时,该非局部问题至少有3个不同的解;(ⅱ)当λ=λ_*时,该非局部问题至少有2个不同的解;(ⅲ)当λ>λ_*时,该非局部问题至少有1个解.展开更多
考虑了非局部边值问题{-a(∫Ω|u|qdx)Δu+b(l(u))u=f(x,u), in Ω,u=0, on Ω,及其相应的非局部抛物问题的正解存在性.其中Ω是RN中的有界光滑区域,a和b是给定的函数.利用Galerkin方法,首先获得了具有低阶项的非局部椭圆问题正解的...考虑了非局部边值问题{-a(∫Ω|u|qdx)Δu+b(l(u))u=f(x,u), in Ω,u=0, on Ω,及其相应的非局部抛物问题的正解存在性.其中Ω是RN中的有界光滑区域,a和b是给定的函数.利用Galerkin方法,首先获得了具有低阶项的非局部椭圆问题正解的存在性,进一步证明了抛物问题正解的存在性.展开更多
通过变分方法在光滑有界域Ω上研究由常数a,b>0,参数λ>0及连续函数f(x,u)共同决定的非局部问题:{-(a-b integral from Ω|▽u|~2dx)Δu+bλu^3=f(x,u)x∈Ω u=0 x∈Ω利用Ekeland变分原理和山路引理得到该问题近共振情形多重...通过变分方法在光滑有界域Ω上研究由常数a,b>0,参数λ>0及连续函数f(x,u)共同决定的非局部问题:{-(a-b integral from Ω|▽u|~2dx)Δu+bλu^3=f(x,u)x∈Ω u=0 x∈Ω利用Ekeland变分原理和山路引理得到该问题近共振情形多重解的存在性.展开更多
文摘考虑一类非局部问题{-(a-b integral from Ω|▽u|~2dx)Δu=λg(x)x∈Ω u=0 x∈Ω其中a>0,b>0,ΩR^N是有界开集,λ>0且g∈H^(-1)(Ω)\{0},这里H^(-1)(Ω)是Sobolev空间H_0~1(Ω)的对偶空间.应用Ekeland变分原理和山路引理证明了:存在λ_*>0,使得:(ⅰ)当λ∈(0,λ_*)时,该非局部问题至少有3个不同的解;(ⅱ)当λ=λ_*时,该非局部问题至少有2个不同的解;(ⅲ)当λ>λ_*时,该非局部问题至少有1个解.
基金Supported by Foundation of Major Project of Science and Technology of Chinese Education Ministry(2005101SBJBC51)SRFDP of Higher Education(2005101TSJB157)
文摘考虑了非局部边值问题{-a(∫Ω|u|qdx)Δu+b(l(u))u=f(x,u), in Ω,u=0, on Ω,及其相应的非局部抛物问题的正解存在性.其中Ω是RN中的有界光滑区域,a和b是给定的函数.利用Galerkin方法,首先获得了具有低阶项的非局部椭圆问题正解的存在性,进一步证明了抛物问题正解的存在性.
基金The National Natural Science Foundation of China(11202106)the Natural Science Foundation of the Education Department of Anhui Province(KJ2015A347,KJ2014A151,KJ2013B153)the Excellent Youth Talented Project of the Colleges and Universities of Anhui Province(gxyq ZD2016520)