期刊文献+

无穷区间上分数阶非局部边值问题的可解性 被引量:4

Solvability of solutions for nonlocal boundary value problems of fractional order on infinite intervals
在线阅读 下载PDF
导出
摘要 运用Banach压缩映像原理和Schauder不动点定理,研究了无穷区间上非线性项含有低一阶分数微分的分数微分方程非局部边值问题: In this paper,we use Bananch's contraction mapping principle and Schauder's fixed point theorem to study the existence and uniqueness of solutions for nonlocal boundary value problems of fractional differential equations with the nonlinear term dependent in a fractional derivative of lower order on infinite intervals,
出处 《河北科技大学学报》 CAS 2015年第6期577-586,共10页 Journal of Hebei University of Science and Technology
基金 国家自然科学基金(11201112) 河北省自然科学基金(A2013208147 A2014208152 A2015208114 A2015208051) 河北省教育厅基金(Z2014062) 河北省教育厅自然科学青年基金(QN2015175)
关键词 常微分方程其他学科 非局部边值问题 分数微分方程 无穷区间 不动点定理 ordinary differential equation nonlocal boundary value problem fractional differential equation infinite interval fixed point theorem
作者简介 王菊芳(1981-),女,山东莱州人,讲师,硕士,主要从事鲁棒控制、微分方程边值问题等方面的研究。E—mail:changlongyu@126.com
  • 相关文献

参考文献24

  • 1AGARWAL R P,O’REGAN D.Infinite Interval Problems for Differential,Difference and Integal Equations[M].London:Kluwer Academic Publisher,2001.
  • 2O'REGAN D.Theory of Singular Boundary Value Problems[M].New Jersey:World Scientific Publishing,1994.
  • 3AGARWAL R P,O’REGAN D.Nonlinear boundary value problems on the semi-in nite interval:An upper andlower solution approach[J].Mathematic,2002,49:129-140.
  • 4BAXLEY J V.Existence and uniqueness for nonlinear boundary value problems on infinite interval[J].Journal of Mathematical Analysis and Applications,1990,147(1):122-133.
  • 5JIANG D, AGARWAL R P. A uniqueness and existence theorem for a singular third-order boundary value problemon [-0, + oo)[J]. Applied Mathematics Letters, 2002,15(4) : 445-451.
  • 6禹长龙,李志广,魏会贤,王菊芳.无穷区间上二阶m点共振边值问题解的存在性和唯一性[J].河北科技大学学报,2013,34(1):7-14. 被引量:4
  • 7AHMAD B,ALSAEDI A,ALGHAMDI B S.Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions[J].Nonlinear Analysis Real World Applications,2008,9(4):1727-1740.
  • 8LIAN Hairong,GE Wegao.Solvability for second-order three-point boundary value problems on a half-line[J].Applied Mathematics Letters,2006,19(10):1000-1006.
  • 9KILBAS A A,SRIVASTAVA H M,TRUJILLO J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam:North-Holland Mathematics Studies,2006.
  • 10SAMKO S G,KILBAS A A,MARICHEV O I.Fractional Integral and Derivative:Theory and Applications[M].Yverdon:Gordon and Breach Science Publishers,1993.

二级参考文献22

  • 1索秀云,郭少聪,张继叶,郭彦平.四阶非局部边值问题方程组正解的存在性[J].河北科技大学学报,2012,33(3):197-201. 被引量:3
  • 2刘玉敬,郭少聪,郭彦平.带有积分边值条件的三阶边值问题正解的存在性[J].河北科技大学学报,2012,33(2):93-96. 被引量:6
  • 3AGARWAL R P,O'REGAN D. Infinite Interval Problems for Differential,Difference and Integal Equations[M].Dordrecht,the Netherlands:Kluwer Academic Publishers,2001.
  • 4AGARWAL R P,O'REGAN D. Nonlinear boundary value problems on the semi-infinite interval:An upper and lower solution approach[J].Mathematika,2002.129-140.
  • 5BAXLEY J V. Existence and uniqueness for nonlinear boundary value problems on infinite interval[J].Journal of Mathematical Analysis and Applications,1990.127-133.
  • 6JIANG D,AGARWAL R P. A uniqueness and existence theorem for a singular third-order boundary value problemon[0,+∞)[J].Applied Mathematics Letters,2002.445-451.
  • 7MAR. Existence of positive solution for second-order boundary value problems on infinite intervals[J].Applied Mathematics Letters,2003.33-39.
  • 8LIAN H,GE W. Solvability for second-order three-point boundary value problems on a half-line[J].Applied Mathematics Letters,2006,(10):1000-1006.
  • 9LIAN H,PANG H,GE W. Triple positive solutions for boundary value problems on infinite intervals[J].Nonlinear Analysis-Theory Methods and Applications,2007.2199-2207.
  • 10GUO Yanping,YU Changlong,WANG Jufang. Existence of three positive solutions for m-point boundary value problems on infinite intervals[J].Nonlinear Analysis-Theory Methods and Applications,2009.717-722.

共引文献3

同被引文献18

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部