期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
完全互补小波噪声辅助集总经验模态分解 被引量:19
1
作者 何刘 丁建明 +1 位作者 林建辉 刘新厂 《振动与冲击》 EI CSCD 北大核心 2017年第4期232-242,共11页
经验模态分解(EMD)是一种自适应非线性非平稳数据处理方法。噪声辅助的EMD方法能克服EMD方法在处理间歇信号时出现的"模态混叠"现象。在这些噪声辅助方法中,互补集总经验模态分解(CEEMD)和完全噪声辅助噪声集总经验模态分解(C... 经验模态分解(EMD)是一种自适应非线性非平稳数据处理方法。噪声辅助的EMD方法能克服EMD方法在处理间歇信号时出现的"模态混叠"现象。在这些噪声辅助方法中,互补集总经验模态分解(CEEMD)和完全噪声辅助噪声集总经验模态分解(CEEMDAN)恢复了EMD分解的完整性。在现有分析方法上提出了完全互补小波噪声辅助集总经验模态分解(CCWEEMDAN)算法。该算法能用更小的集总数、更少的迭代次数和极小的计算消耗获得更好的光谱分离效果和数目较少的筛选模态。 展开更多
关键词 经验模态分解 经验模态分解 噪声辅助 模态混叠 互补集总经验模态分解
在线阅读 下载PDF
采用改进互补集总经验模态分解的电能质量扰动检测方法 被引量:7
2
作者 吴新忠 邢强 +2 位作者 陈明 成江洋 杨春雨 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2017年第9期1834-1843,共10页
针对集总经验模态分解(EEMD)方法加噪参数(噪声幅值、集总次数)需人为确定、分解残余噪声大以及计算耗时长的缺点,提出一种自适应快速互补集总经验模态分解(AFCEEMD)方法.该方法分析不同频率形式噪声对极值点分布的影响,确定加噪频率采... 针对集总经验模态分解(EEMD)方法加噪参数(噪声幅值、集总次数)需人为确定、分解残余噪声大以及计算耗时长的缺点,提出一种自适应快速互补集总经验模态分解(AFCEEMD)方法.该方法分析不同频率形式噪声对极值点分布的影响,确定加噪频率采用高频辅助分解的优势,并以极值点分布特性作为评价指标自适应选择最优加噪频率.通过对EEMD加噪准则的研究,推导出加噪幅值和分解次数采取固定值:0.01SD和2次,且以正负成对的形式加入到原始信号中.通过仿真实验和搭建的电能质量扰动平台的实测数据验证了所提方法的自适应性和计算性能,而且适用于电能质量扰动检测与分析. 展开更多
关键词 集总经验模态分解(EEMD) 自适应快速互补EEMD(AFCEEMD) 极值点分布 加噪频率参数优化 电能质量扰动
在线阅读 下载PDF
采用改进的集总平均经验模态分解法的内燃机气门拍击激励与燃烧激励分离的研究 被引量:3
3
作者 郑旭 郝志勇 +1 位作者 金阳 卢兆刚 《汽车工程》 EI CSCD 北大核心 2011年第11期930-936,共7页
提出了一种改进的集总平均经验模态分解(M-EEMD)方法,并阐述了其基本原理。通过仿真试验,证实了M-EEMD不仅能够很好地解决经验模态分解(EMD)中模态混叠问题,而且能够抑制集总平均经验模态分解(EEMD)的噪声残余和模态分裂等问题。作为实... 提出了一种改进的集总平均经验模态分解(M-EEMD)方法,并阐述了其基本原理。通过仿真试验,证实了M-EEMD不仅能够很好地解决经验模态分解(EMD)中模态混叠问题,而且能够抑制集总平均经验模态分解(EEMD)的噪声残余和模态分裂等问题。作为实例,对一个4缸4冲程内燃机气缸盖罩的振动信号进行M-EEMD分解,并对分解得到的IMF分量进行时频分析。结果表明M-EEMD能够成功地将内燃机气门拍击引起的机械激励成分与燃烧激励成分分离。 展开更多
关键词 内燃机 气门拍击 燃烧 激励分离 改进的平均经验模态分解
在线阅读 下载PDF
基于SVD-MEEMD与Teager能量谱的滚动轴承微弱故障特征提取 被引量:8
4
作者 杨超 赵荣珍 孙泽金 《噪声与振动控制》 CSCD 2020年第4期92-97,共6页
针对滚动轴承早期微弱故障特征难以提取的问题,提出一种基于奇异值分解(Singular Value Decomposition,SVD)、改进的集总经验模态分解(Modified Ensemble EMD,MEEMD)和Teager能量谱的滚动轴承微弱故障特征提取方法。该方法首先采用Hanke... 针对滚动轴承早期微弱故障特征难以提取的问题,提出一种基于奇异值分解(Singular Value Decomposition,SVD)、改进的集总经验模态分解(Modified Ensemble EMD,MEEMD)和Teager能量谱的滚动轴承微弱故障特征提取方法。该方法首先采用Hankel矩阵理论对滚动轴承的故障信号进行相空间重构得到重构矩阵,并根据奇异值差分谱理论对重构矩阵进行SVD处理,实现信号的初步降噪;其次,对降噪后的信号进行MEEMD分解得到一组本征模态分量(Intrinsic Mode Function,IMF)和一个余量,依据峭度-相关系数规则选取出一个冲击特征敏感的IMF分量,计算其Teager能量算子;最后,通过分析能量谱图实现对滚动轴承微弱故障的模式辨识。采用美国西储大学的滚动轴承故障数据对所提方法进行验证,并与其它模式的组合方法进行比较。结果表明,该方法具有良好的降噪效果和敏感特征筛选能力,从而能更准确提取出滚动轴承早期故障频率,实现故障类型的准确辨识。 展开更多
关键词 故障诊断 微弱故障 特征提取 奇异值分解 改进的集总经验模态分解 Teager能量谱
在线阅读 下载PDF
基于振动的汽油机爆震始点识别与强度评价研究 被引量:2
5
作者 韩璞 毕凤荣 张剑 《内燃机工程》 EI CAS CSCD 北大核心 2016年第5期134-139,共6页
研究了利用振动信号进行汽油机爆震检测和强度评价的方法。通过滤波对机体振动信号进行降噪处理,利用功率谱密度估计确定了爆震特征频率。将集总经验模态分解(ensemble empirical mode decomposition,EEMD)应用到机体振动信号处理中,结... 研究了利用振动信号进行汽油机爆震检测和强度评价的方法。通过滤波对机体振动信号进行降噪处理,利用功率谱密度估计确定了爆震特征频率。将集总经验模态分解(ensemble empirical mode decomposition,EEMD)应用到机体振动信号处理中,结合连续小波变换(continues wavelet transform,CWT)对EEMD分解得到的各本征模态函数(intrinsic mode function,IMF)分量进行时频分析,确定包含爆震特征频率成分的IMF分量,研究了利用振动信号判别爆震始点的方法,并结合缸压信号对结果进行了验证。在确定了准确的爆震窗口后,提出了爆震强度评价参数K。试验用汽油机的计算结果表明:当K值超过20,可以判断有轻微爆震的发生;当K值超过80,则代表爆震强度较强,发生明显爆震。 展开更多
关键词 内燃机 振动信号 爆震始点 爆震强度 集总经验模态分解
在线阅读 下载PDF
基于EMD改进算法的爆破振动信号去噪 被引量:36
6
作者 易文华 刘连生 +1 位作者 闫雷 董斌斌 《爆炸与冲击》 EI CAS CSCD 北大核心 2020年第9期75-85,共11页
为了解决振动信号经验模态分解(empirical mode decomposition,EMD)滤波去噪效果不佳的问题,提出一种自适应性正交经验模态分解(principal empirical mode decomposition,PEMD)的信号去噪方法。该算法融合了EMD分解的自适应性和主成分分... 为了解决振动信号经验模态分解(empirical mode decomposition,EMD)滤波去噪效果不佳的问题,提出一种自适应性正交经验模态分解(principal empirical mode decomposition,PEMD)的信号去噪方法。该算法融合了EMD分解的自适应性和主成分分析(principal component analysis,PCA)的完全正交性特点,对信号EMD分解过程中产生的模态混叠现象进行消除,得到了最佳的去噪效果。分析表明:PEMD在仿真模拟试验中相比于传统EMD算法和集总经验模态分解(ensemble empirical mode decomposition,EEMD)算法,信噪比分别提高了1.15 dB和0.38 dB,且均方根误差最小;频域上PEMD对仿真信号频率(30 Hz)识别的灵敏度最高,30 Hz之外的噪声滤除效果最好。在爆破振动试验中,PEMD和EEMD去除噪声毛刺的效果较为理想,且PEMD在0~300 Hz的中低频振动信号保存效果最好,300 Hz以上的高频噪声滤除效果最好。 展开更多
关键词 爆破振动 去噪 模态混叠 主成分分析 经验模态分解 集总经验模态分解
在线阅读 下载PDF
基于EEMD-Hilbert谱的涡街流量计尾迹振荡特性 被引量:3
7
作者 姚凤艳 周天 孙志强 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2017年第2期395-402,共8页
为了研究涡街流量计尾迹振荡特征,采用集总经验模态分解(EEMD)-Hilbert谱方法,对测量介质为空气、流量范围为10.58~220 m^3/h的涡街流量计管壁差压信号进行处理,首先用EEMD方法对管壁差压信号进行分解,得到固有模态分量,然后对分解后的... 为了研究涡街流量计尾迹振荡特征,采用集总经验模态分解(EEMD)-Hilbert谱方法,对测量介质为空气、流量范围为10.58~220 m^3/h的涡街流量计管壁差压信号进行处理,首先用EEMD方法对管壁差压信号进行分解,得到固有模态分量,然后对分解后的各个分量进行Hilbert变换,得到Hilbert谱和边际谱,进而提取管壁差压信号的旋涡脱落频率。比较了Fourier变换与EEMD-Hilbert谱方法在信号去噪和频率提取方面的性能。结果表明:EEMD-Hilbert谱方法可有效去除叠加在实际涡街成分之中的噪声,能够较完整保留尾迹振荡的固有成分;在流量较低时,EEMD-Hilbert谱方法对尾迹振荡频率的提取精度比Fourier变换高30%以上,有效拓展了涡街流量计的测量下限;通过计算能量比,揭示了EEMD-Hilbert谱方法提高频率提取精度的原因,即EEMD-Hilbert谱方法降低了信噪比;Hilbert谱直观表示信号的时间-频率-能量关系。 展开更多
关键词 涡街流量计 尾迹振荡 集总经验模态分解(EEMD) HILBERT变换 去噪
在线阅读 下载PDF
基于MEEMD的内燃机辐射噪声贡献 被引量:15
8
作者 郑旭 郝志勇 +1 位作者 金阳 卢兆刚 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第5期954-960,共7页
为了研究内燃机振动成分对噪声的贡献,提出一种改进的集总平均经验模态分解(MEEMD)方法.通过仿真试验,对比MEEMD与传统经验模态分解(EMD)和集总平均经验模态分解(EEMD)的结果.结果表明,MEEMD是一种更为优秀的自适应信号模态分解方法,不... 为了研究内燃机振动成分对噪声的贡献,提出一种改进的集总平均经验模态分解(MEEMD)方法.通过仿真试验,对比MEEMD与传统经验模态分解(EMD)和集总平均经验模态分解(EEMD)的结果.结果表明,MEEMD是一种更为优秀的自适应信号模态分解方法,不仅能够抑制模态混叠问题,而且能够解决模态分裂等问题.采用MEEMD方法对内燃机振动成分对辐射噪声的贡献进行研究,以一个4缸4冲程内燃机为例,对标定工况下的缸盖罩振动信号和缸盖罩近场噪声信号进行MEEMD分解,并对分解得到的本征模态函数(IMF)进行时频分析,研究对辐射噪声贡献大的振动成分的来源.研究结果表明,通过MEEMD方法能够得到对内燃机辐射噪声贡献大的振动成分,并且准确确定其来源. 展开更多
关键词 内燃机 振动信号 噪声信号 改进的平均经验模态分解 时频分析
在线阅读 下载PDF
大跨斜拉桥北斗监测挠度温度效应分离研究 被引量:5
9
作者 谭冬梅 聂顺 +2 位作者 瞿伟廉 刘晓飞 吴浩 《建筑科学与工程学报》 CAS 北大核心 2019年第5期71-79,共9页
针对大跨斜拉桥北斗监测挠度温度效应分离问题,提出先利用挠度数据的周期特性,在挠度数据首尾分别进行波形延拓,在进行小波分解后所得小波细节中剔除高幅值车载作用挠度得到残余分量,将其与小波系数重构得到预降噪挠度,最后将预降噪挠... 针对大跨斜拉桥北斗监测挠度温度效应分离问题,提出先利用挠度数据的周期特性,在挠度数据首尾分别进行波形延拓,在进行小波分解后所得小波细节中剔除高幅值车载作用挠度得到残余分量,将其与小波系数重构得到预降噪挠度,最后将预降噪挠度进行小波分解来实现挠度数据的高精度降噪;得到降噪挠度后,利用改进的集总平均经验模态分解(MEEMD)良好的可抑制分解过程中产生模态混叠的特性,将降噪挠度进行MEEMD分解,接着将所得日温差和年温差效应第1个半周期通过对称置换得高精度日温差和年温差效应,最后将降噪挠度剔除高精度日温差和年温差效应后所得残余分量再次进行MEEMD分解,所得趋势部分即为长期挠度,从而实现日温差效应、年温差效应、长期挠度的逐步分离。结果表明:波形延拓+预降噪+小波分解的降噪算法比传统单一降噪算法精度更高;温度效应分离算法能实现挠度温度效应各周期成分的精确分离,适合大跨斜拉桥北斗监测挠度温度效应分离。 展开更多
关键词 波形延拓 小波分解 改进的平均经验模态分解 温度效应
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部