期刊文献+
共找到194篇文章
< 1 2 10 >
每页显示 20 50 100
基于隐半Markov模型的故障诊断和故障预测方法研究 被引量:37
1
作者 胡海峰 安茂春 +1 位作者 秦国军 胡茑庆 《兵工学报》 EI CAS CSCD 北大核心 2009年第1期69-75,共7页
隐半Markov模型(HSMM)是隐Markov模型(HMM)的一种扩展形式,通过在HMM结构中加入状态驻留时间分布参数,克服了HMM假设状态驻留时间服从指数分布的不足。HSMM不仅具有较强的模式分类能力,而且能对实际问题中的状态驻留时间进行合理建模,... 隐半Markov模型(HSMM)是隐Markov模型(HMM)的一种扩展形式,通过在HMM结构中加入状态驻留时间分布参数,克服了HMM假设状态驻留时间服从指数分布的不足。HSMM不仅具有较强的模式分类能力,而且能对实际问题中的状态驻留时间进行合理建模,故既可用于故障诊断,又可用于故障预测。分析了利用HSMM进行故障诊断和预测的框架;并针对传统HSMM建模算法计算量和存储空间都比较大的缺点,引入并改进了一种快速递推算法,降低了计算复杂度和存储空间要求;最后将HSMM应用于直升机齿轮箱轴承故障诊断和GaAs激光器剩余使用寿命(RUL)预测,试验结果证明了这种方法的有效性。 展开更多
关键词 人工智能 隐半markov模型 快速递推算法 故障诊断 故障预测
在线阅读 下载PDF
基于情绪向量的隐半马尔可夫模型股市拐点预测方法
2
作者 姚宏亮 江永生 +1 位作者 杨静 俞奎 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第10期1335-1340,共6页
股市的情绪化倾向是股票市场具有高度不确定性的主要原因,直接利用历史数据的股票趋势预测方法难以适应市场情绪的多变性,在实际应用中效果不理想。文章针对市场情绪的不稳定性导致股市拐点难以预测的问题,提出一种基于情绪向量的隐半... 股市的情绪化倾向是股票市场具有高度不确定性的主要原因,直接利用历史数据的股票趋势预测方法难以适应市场情绪的多变性,在实际应用中效果不理想。文章针对市场情绪的不稳定性导致股市拐点难以预测的问题,提出一种基于情绪向量的隐半马尔可夫模型股市拐点预测方法(hidden semi-Markov model stock turning point prediction method based on sentiment vector,SV-HSMM)。针对市场情绪不可观察性,选取与市场情绪相关的主要特征,使用马尔可夫毯融合成市场情绪;利用隐半马尔可夫模型建模市场环境,构建市场情绪、市场状态和状态持续时间之间的结构关系;引入情绪向量平滑情绪的多变性,并利用Kullback-Leibler(KL)距离量化情绪热度;利用隐半马尔可夫模型的动态推理实现股市拐点预测。结果表明情绪向量方法具有更好的预测效果。 展开更多
关键词 市场情绪 情绪向量 马尔可夫模型(HSMM) Kullback-Leibler(KL)距离
在线阅读 下载PDF
黄河上游地区泥石流冲击刚性防护结构运动过程的移动粒子半隐式流固耦合模拟
3
作者 王志刚 冯亚亚 +7 位作者 张长青 孙中科 徐扬 卢明辉 黄丽颖 马鑫弟 郑俊杰 刘冠男 《地球科学与环境学报》 北大核心 2025年第4期618-633,共16页
黄河上游地区泥石流灾害具有高突发性和强破坏性,其细颗粒含量高、黏度大的特性使得传统数值方法难以准确模拟其冲击过程。基于移动粒子半隐式(MPS)方法与宾汉姆流变模型的耦合框架,构建了适用于泥石流-结构流固耦合模拟的高精度数值模... 黄河上游地区泥石流灾害具有高突发性和强破坏性,其细颗粒含量高、黏度大的特性使得传统数值方法难以准确模拟其冲击过程。基于移动粒子半隐式(MPS)方法与宾汉姆流变模型的耦合框架,构建了适用于泥石流-结构流固耦合模拟的高精度数值模型,并通过对比模型模拟结果与前人试验结果验证了该模型的准确性;针对黄河上游地区典型泥石流灾害场景,系统模拟了不同泥石流体积(10~30 m3)和边坡坡度(5°~15°)下泥石流对刚性防护结构冲击动力过程的影响。结果表明:(1)在边坡坡度为5°工况下,当泥石流体积为25 m3时,泥石流冲击力峰值为287.80 kN;当泥石流体积为30 m3时,泥石流冲击力第1个峰值陡增至681.71 kN,且第2个峰值(261.07 kN)仍具显著破坏性;当泥石流体积为15~30 m3时,泥石流冲击力峰值与泥石流体积之间的关系呈现指数函数关系;根据这一关系,泥石流体积从20 m3增长到25 m3时,泥石流冲击力峰值增大幅度仅为52.4%,但是泥石流体积从25 m3增长到30 m3时,泥石流冲击力峰值增大幅度高达116.5%;泥石流冲击力峰值突变对应的泥石流体积阈值为27 m3。(2)在泥石流体积为15 m3工况下,当边坡坡度增大至15°时,泥石流冲击力时程曲线呈现显著双峰特征,峰值分别为442.54和398.29 kN(两者相差小于10%),导致刚性防护结构反复受力的风险增加。 展开更多
关键词 泥石流 刚性防护结构 移动粒子式方法 宾汉姆流变模型 流固耦合 冲击荷载 黄河
在线阅读 下载PDF
基于隐Markov模型的重型数控机床健康状态评估 被引量:17
4
作者 邓超 孙耀宗 +2 位作者 李嵘 王远航 熊尧 《计算机集成制造系统》 EI CSCD 北大核心 2013年第3期552-558,共7页
为了辅助重型数控机床的综合健康状态评估,从性能劣化角度出发,建立基于多性能参数多观测序列的隐Markov健康状态评估模型,改进了以往基于单性能参数的隐Markov模型不能准确描述机床健康状态的问题。针对隐Markov模型的参数初始化难题,... 为了辅助重型数控机床的综合健康状态评估,从性能劣化角度出发,建立基于多性能参数多观测序列的隐Markov健康状态评估模型,改进了以往基于单性能参数的隐Markov模型不能准确描述机床健康状态的问题。针对隐Markov模型的参数初始化难题,通过K-means方法进行参数聚类分析,使初始化参数趋向于全局最优解;由于单性能参数不能完全描述机床状态的隐含信息,提出一种基于多性能参数多观测序列值的隐Markov模型训练算法。通过某重型数控机床滚珠丝杠的健康状态评估实例,获取了滚珠丝杠的健康状态变化趋势,验证了方法的可行性和有效性。 展开更多
关键词 重型数控机床 markov模型 健康评估 状态劣化
在线阅读 下载PDF
隐Markov模型及其在慢性病流行病学研究中的应用 被引量:11
5
作者 潘海燕 丁元林 +1 位作者 胡利人 孔丹莉 《中国卫生统计》 CSCD 北大核心 2009年第1期38-40,共3页
目的探讨隐Markov模型在慢性病流行病学研究领域中的应用。方法以2型糖尿病为例,应用多状态隐Markov模型对2型糖尿病的影响因素进行分析。结果采用隐Markov模型分析2型糖尿病不同发展阶段的影响因素取得了较为满意的效果。结论隐Markov... 目的探讨隐Markov模型在慢性病流行病学研究领域中的应用。方法以2型糖尿病为例,应用多状态隐Markov模型对2型糖尿病的影响因素进行分析。结果采用隐Markov模型分析2型糖尿病不同发展阶段的影响因素取得了较为满意的效果。结论隐Markov模型是探讨慢性病影响因素的有效工具,在慢性病流行病学研究中具有广阔的应用前景。 展开更多
关键词 markov模型 markov模型 2型糖尿病
在线阅读 下载PDF
基于改进遗传算法和隐Markov模型的协议异常检测方法 被引量:10
6
作者 邱卫 杨英杰 +1 位作者 汪永伟 常德显 《计算机应用研究》 CSCD 北大核心 2016年第4期1164-1168,共5页
针对现有基于隐Markov模型的协议异常检测方法中存在的训练样本不足和初始参数敏感问题,提出一种基于改进遗传算法和隐Markov模型的协议异常检测新方法。首先,采用局部竞争选择策略、算术交叉算子和自适应非均匀变异算子改进遗传算法,... 针对现有基于隐Markov模型的协议异常检测方法中存在的训练样本不足和初始参数敏感问题,提出一种基于改进遗传算法和隐Markov模型的协议异常检测新方法。首先,采用局部竞争选择策略、算术交叉算子和自适应非均匀变异算子改进遗传算法,避免传统遗传算法在收敛过程中的早熟和停滞问题;然后,利用改进的遗传算法优化隐Markov模型的初始参数,解决模型对初始参数敏感的问题;最后,以协议关键词和关键词时间间隔作为训练观测值,细粒度地描述协议行为,扩大模型的训练样本空间。在DARPA 1999数据集上的实验结果表明,该方法具有很高的检测率和较低的误报率。 展开更多
关键词 入侵检测 协议异常 遗传算法 markov模型 参数优化
在线阅读 下载PDF
基于隐Markov模型的微径铣刀磨损监测 被引量:7
7
作者 张翔 富宏亚 +1 位作者 孙雅洲 韩振宇 《计算机集成制造系统》 EI CSCD 北大核心 2012年第1期141-148,共8页
以微径铣刀磨损程度的识别为研究对象,考虑可能出现的单齿切削现象,建立了刀具磨损的隐Mark-ov模型。模型首先判断刀具在稳态切削情况下是否出现单齿切削现象,随后以小波分解的方式分别提取切削力特征。通过Fisher线性判别提取8个最优... 以微径铣刀磨损程度的识别为研究对象,考虑可能出现的单齿切削现象,建立了刀具磨损的隐Mark-ov模型。模型首先判断刀具在稳态切削情况下是否出现单齿切削现象,随后以小波分解的方式分别提取切削力特征。通过Fisher线性判别提取8个最优的切削力特征,作为隐Markov模型训练的输入向量。对于多组切削参数为单齿切削和两齿交替切削,分别训练三个不同磨损阶段的隐Markov模型,用以识别刀具真实磨损状态,并通过Euclidian线性判别确定最适应的识别模型。实验结果表明,该方法能够准确识别微径铣刀磨损状态,准确率在85%左右。 展开更多
关键词 微径铣刀 刀具磨损 单齿切削现象 markov模型
在线阅读 下载PDF
基于量子粒子群优化Volterra时域核辨识的隐Markov模型识别方法 被引量:12
8
作者 李志农 蒋静 +1 位作者 冯辅周 袁振伟 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第12期2693-2698,共6页
将量子粒子群优化算法引入Volterra级数模型的非线性辨识中,并结合隐Markov模型(hidden Markov model,HMM),提出了一种基于量子粒子群优化的Volterra时域核特征提取的HMM识别方法,在提出的方法中,利用量子粒子群优化算法辨识得到的前三... 将量子粒子群优化算法引入Volterra级数模型的非线性辨识中,并结合隐Markov模型(hidden Markov model,HMM),提出了一种基于量子粒子群优化的Volterra时域核特征提取的HMM识别方法,在提出的方法中,利用量子粒子群优化算法辨识得到的前三阶Volterra时域核作为故障特征,输入到各种状态的HMM中,其中,输出概率最大的HMM对应的状态即为设备的当前运行状态。提出的方法克服了传统的基于Volterra模型系统的机械故障诊断要求目标函数连续可导、容易陷入局部最小以及抗干扰能力差等缺陷。最后,将提出的方法应用到旋转机械故障诊断中。实验结果验证了该方法的有效性。 展开更多
关键词 VOLTERRA级数 markov模型(HMM) 量子粒子群优化(QPSO) 故障诊断 模式识别
在线阅读 下载PDF
基于AR的二维隐Markov模型离心泵故障诊断方法 被引量:5
9
作者 周云龙 柳长昕 +3 位作者 宋延宏 赵鹏 孙斌 洪文鹏 《流体机械》 CSCD 北大核心 2008年第10期41-45,共5页
离心泵速度变化过程的振动信号具有信息量大、非平稳、重复再现性不佳等特点,二维隐Markov模型(2D-HMM)很适合处理此类信号。利用AR谱不受数据长度的限制,AR模型参数对状态变化规律反映敏感的特点,以振动信号做自回归变换后的AR谱系数... 离心泵速度变化过程的振动信号具有信息量大、非平稳、重复再现性不佳等特点,二维隐Markov模型(2D-HMM)很适合处理此类信号。利用AR谱不受数据长度的限制,AR模型参数对状态变化规律反映敏感的特点,以振动信号做自回归变换后的AR谱系数作为特征向量,将基于AR的2D-HMM引入到离心泵故障诊断中,提出了一种基于AR的2D-HMM故障诊断方法,并论述了该模型的拓扑结构和主要参数以及相应的训练和识别算法。最后通过2BA-6A离心泵试验系统验证了方法的有效性。 展开更多
关键词 离心泵 故障诊断 二维markov模型 AR谱分析
在线阅读 下载PDF
连续隐半马尔科夫模型在轴承性能退化评估中的应用 被引量:19
10
作者 李巍华 李静 张绍辉 《振动工程学报》 EI CSCD 北大核心 2014年第4期613-620,共8页
连续隐半Markov模型(Continuous hidden semi-Markov model,CHSMM)是隐Markov模型(Hidden Markov model,HMM)的一种扩展形式,可用于时间序列过程的动态建模。通过加入状态分布参数并对多组观测值进行连续化,可加强模型对新观测值的处理... 连续隐半Markov模型(Continuous hidden semi-Markov model,CHSMM)是隐Markov模型(Hidden Markov model,HMM)的一种扩展形式,可用于时间序列过程的动态建模。通过加入状态分布参数并对多组观测值进行连续化,可加强模型对新观测值的处理能力以及对状态驻留时间的建模能力。利用该方法建立了轴承性能退化的评估模型。首先,分析振动信号并提取频带能量作为退化特征;然后将正常状态下的特征样本作为模型的观测值对CHSMM进行训练;最后将待测的特征样本输入模型,得到待测样本相对于所建立正常模型的输出概率,作为轴承性能退化状态的标志。轴承疲劳寿命试验结果表明:所提的评估模型能较好地刻画轴承性能退化的过程,并能在早期对轴承的性能退化做出预警。 展开更多
关键词 故障预测 轴承 连续马尔科夫模型 频带能量 性能退化评估
在线阅读 下载PDF
应用Hopfield神经网络和小波域隐Markov树模型的图像复原 被引量:8
11
作者 娄帅 丁振良 +1 位作者 袁峰 李晶 《光学精密工程》 EI CAS CSCD 北大核心 2009年第11期2828-2834,共7页
为了解决传统的Hopfield神经网络图像复原算法对噪声抑制和图像细节保护不能很好兼顾的问题,提出了一种基于改进的连续Hopfield神经网络和小波域隐Markov树(HMT)模型的复原算法。将小波域HMT模型作为图像小波系数统计关系的先验知识,并... 为了解决传统的Hopfield神经网络图像复原算法对噪声抑制和图像细节保护不能很好兼顾的问题,提出了一种基于改进的连续Hopfield神经网络和小波域隐Markov树(HMT)模型的复原算法。将小波域HMT模型作为图像小波系数统计关系的先验知识,并以正则化项的形式引入到神经网络模型中,最终利用Hopfield神经网络的能量收敛特性完成图像复原。同时提出了一种高度并行的网络权值矩阵计算方法,通过对模板图像进行算子操作,分批求取网络权值,避免了大型矩阵的乘法运算。实验结果表明,无论是对真实图像还是人工生成图像,算法复原的视觉效果均有明显改善,提高信噪比(ISNR)较传统同类算法增加了0.3dB以上,达到了同时抑制噪声和保护图像细节的目的。 展开更多
关键词 图像复原 HOPFIELD神经网络 小波域markov模型 权值矩阵
在线阅读 下载PDF
主分量分析和因子隐Markov模型在机械故障诊断中的应用 被引量:3
12
作者 李志农 曾明如 +2 位作者 韩捷 何永勇 褚福磊 《机械强度》 EI CAS CSCD 北大核心 2007年第1期25-29,共5页
主分量分析(principalcomponentanalysis,PCA)是统计学中分析数据的一种有效方法,可以将高维数据空间变换到低维特征空间,因而可用于多通道冗余消除和特征提取。因子隐Markov模型是隐Markov模型的扩展,它比隐Mark-ov模型更有优势,适用... 主分量分析(principalcomponentanalysis,PCA)是统计学中分析数据的一种有效方法,可以将高维数据空间变换到低维特征空间,因而可用于多通道冗余消除和特征提取。因子隐Markov模型是隐Markov模型的扩展,它比隐Mark-ov模型更有优势,适用于动态过程时间序列的建模,并具有强大的时序模型分类能力,特别适合非平稳、信号特征重复再现性不佳的信号分析。文中结合主分量分析与因子隐Markov模型,提出一种新的故障识别方法,即以主分量分析方法进行冗余消除和故障特征提取,因子隐Markov模型作为分类器。并应用到机械故障诊断中,同时与基于主分量分析的隐Markov模型的识别方法相比较,实验结果表明基于PCA的因子隐Markov模型识别法和基于PCA的隐Markov模型识别法在故障识别上都是有效的,但对于相同的状态空间,前者的训练速度快于后者,尤其是状态空间越大,这种优势越明显。 展开更多
关键词 主分量分析 因子markov模型 冗余消除 故障诊断 模式识别
在线阅读 下载PDF
基于隐Markov模型的RNA二级结构预测新方法 被引量:3
13
作者 董浩 刘元宁 +1 位作者 张浩 王刚 《计算机研究与发展》 EI CSCD 北大核心 2012年第4期812-817,共6页
有效预测RNA二级结构是生物信息学中的重要研究领域.提出一种基于隐Markov模型预测RNA二级结构的新方法.首先,应用前后缀匹配算法快速找到所有可能(包括假结)的茎区,建立RNA-HMM,寻找最优的茎区组合方法,得到包含假结的RNA二级结构.实... 有效预测RNA二级结构是生物信息学中的重要研究领域.提出一种基于隐Markov模型预测RNA二级结构的新方法.首先,应用前后缀匹配算法快速找到所有可能(包括假结)的茎区,建立RNA-HMM,寻找最优的茎区组合方法,得到包含假结的RNA二级结构.实验结果表明,提出的新方法降低了计算复杂性,提高了预测的特异性和敏感性,具有较高的准确率,可以预测RNA的假结结构. 展开更多
关键词 生物信息学 RNA二级结构 假结 自由能 markov模型(HMM)
在线阅读 下载PDF
基于自适应隐式半马尔可夫模型的设备健康诊断与寿命预测方法 被引量:18
14
作者 刘勤明 李亚琴 +1 位作者 吕文元 叶春明 《计算机集成制造系统》 EI CSCD 北大核心 2016年第9期2187-2194,共8页
针对设备健康诊断与寿命预测问题,提出一种基于自适应隐式半马尔可夫模型(AHSMM)结合多传感器信息的设备健康预测方法。提出了AHSMM的前向—后向算法、Viterbi算法和Baum-Welch算法,有效降低了模型的计算复杂性。利用最大似然线性回归... 针对设备健康诊断与寿命预测问题,提出一种基于自适应隐式半马尔可夫模型(AHSMM)结合多传感器信息的设备健康预测方法。提出了AHSMM的前向—后向算法、Viterbi算法和Baum-Welch算法,有效降低了模型的计算复杂性。利用最大似然线性回归训练对输出概率分布和驻留概率分布进行自适应训练,处理多传感器信息间的差异性,进行有效的多传感器信息融合,以更加准确地进行设备健康诊断与寿命预测。利用失效率理论建立了对设备剩余使用寿命进行预测的基本步骤。通过美国卡特彼勒公司液压泵的状态识别和健康预测实际案例对所提出的方法进行评价与验证,实验结果表明,基于AHSMM的设备健康诊断和性能衰退预测方法比传统的隐式半马尔可夫模型(HSMM)更有效。 展开更多
关键词 自适应马尔可夫模型 健康诊断 剩余有效寿命 最大似然线性回归 多传感器信息
在线阅读 下载PDF
基于混合隐Markov链浏览模型的WEB用户聚类与个性化推荐 被引量:3
15
作者 林文龙 刘业政 +1 位作者 朱庆生 奚冬芹 《情报学报》 CSSCI 北大核心 2009年第4期557-564,共8页
针对传统的Markov链模型不能有效的表征长串访问序列所蕴含的丰富的用户行为特征(用户类别特征、访问兴趣迁移特征)的缺点,提出混合隐Markov链浏览模型。混合隐Markov链模型使用多个不同的模型来区分不同类别用户的浏览特征,并为每个... 针对传统的Markov链模型不能有效的表征长串访问序列所蕴含的丰富的用户行为特征(用户类别特征、访问兴趣迁移特征)的缺点,提出混合隐Markov链浏览模型。混合隐Markov链模型使用多个不同的模型来区分不同类别用户的浏览特征,并为每个类别的用户设置了能跟踪捕捉其访问兴趣变化的类隐Markov链模型,能更好地对WWW长串访问序列的复杂特征进行建模,在真实WWW站点访问日志数据上的用户聚类实验与个性化推荐实验的结果表明,混合隐Markov链模型与传统的Markov链模型相比,具有更理想的聚类性能和推荐性能。 展开更多
关键词 WEB使用挖掘 markov模型 用户聚类 个性化推荐
在线阅读 下载PDF
基于隐半马尔可夫模型设备退化状态识别方法研究 被引量:10
16
作者 曾庆虎 邱静 刘冠军 《机械科学与技术》 CSCD 北大核心 2008年第4期429-432,共4页
机械设备从正常到故障往往经历一系列退化状态,正确识别与估计设备当前所处的退化状态,对预防设备进一步退化和故障的发生具有重要意义。隐半马尔可夫模型(Hidden Semi-MarkovModels,HSMM)是隐马尔可夫模型(hidden Markov models,HMM)... 机械设备从正常到故障往往经历一系列退化状态,正确识别与估计设备当前所处的退化状态,对预防设备进一步退化和故障的发生具有重要意义。隐半马尔可夫模型(Hidden Semi-MarkovModels,HSMM)是隐马尔可夫模型(hidden Markov models,HMM)的一种扩展模型,克服了因马尔可夫链的假设造成HMM建模所具有的局限性,比HMM具有更好的建模能力和分析能力。由状态识别和HMM本质上的相通性,将HSMM引入到机械设备的状态识别中,提出了一种基于HSMM状态识别方法,描述了该模型的拓扑结构和主要参数以及相应的训练和识别算法。最后通过滚动轴承试验系统验证了方法的有效性。 展开更多
关键词 马尔可夫模型(HSMM) 状态识别 退化状态 滚动轴承
在线阅读 下载PDF
分层隐Markov模型在设备状态识别中的应用研究 被引量:2
17
作者 滕红智 贾希胜 +3 位作者 赵建民 张星辉 王正军 葛家友 《中国机械工程》 EI CAS CSCD 北大核心 2011年第18期2175-2181,共7页
与传统的隐Markov模型(HMM)相比较而言,应用分层隐Markov模型(HHMM)对设备进行状态识别有诸多优点,而且能以概率的形式更为精确地计算识别结果。针对模型参数随着设备状态的增加呈指数倍增这一问题,引入动态贝叶斯网络这一新的方法,由... 与传统的隐Markov模型(HMM)相比较而言,应用分层隐Markov模型(HHMM)对设备进行状态识别有诸多优点,而且能以概率的形式更为精确地计算识别结果。针对模型参数随着设备状态的增加呈指数倍增这一问题,引入动态贝叶斯网络这一新的方法,由于该方法可以有效地降低模型的计算复杂度并缩短推理时间,所以将HHMM表达为动态贝叶斯网络,利用预处理的振动信号对设备的健康状态进行识别;针对现有状态分类方法的局限性,提出了基于K均值算法和交叉验证方法相结合的状态数优化方法;以齿轮箱全寿命实验为依据,对该模型实现状态识别的基本框架和计算过程进行了研究,研究结果为复杂设备的状态识别提供了新的思路。 展开更多
关键词 分层markov模型 状态识别 动态贝叶斯网络 状态数优化
在线阅读 下载PDF
基于小波特征尺度熵-隐半马尔可夫模型的设备退化状态识别方法及应用 被引量:7
18
作者 曾庆虎 邱静 +1 位作者 刘冠军 谭晓栋 《兵工学报》 EI CAS CSCD 北大核心 2008年第2期198-203,共6页
机械设备从正常到故障往往经历一系列退化状态,正确识别设备当前所处的退化状态,对预防设备进一步退化和故障的发生具有重要意义。提出了一种基于小波特征尺度熵-隐半马尔可夫模型(HSMM)的设备退化状态识别新方法。通过小波变换提取小... 机械设备从正常到故障往往经历一系列退化状态,正确识别设备当前所处的退化状态,对预防设备进一步退化和故障的发生具有重要意义。提出了一种基于小波特征尺度熵-隐半马尔可夫模型(HSMM)的设备退化状态识别新方法。通过小波变换提取小波特征尺度熵,然后构造信号的小波特征尺度熵向量,并以此作为HSMM的输入进行训练,建立基于HSMM的机械设备运行状态分类器,从而实现设备退化状态的识别。并且以滚动轴承为例,对正常和几种故障程度不同的滚动体运行状态进行了识别,实验结果表明该方法能有效的识别设备的退化状态。 展开更多
关键词 信息处理技术 小波特征尺度熵 马尔可夫模型(HSMM) 状态识别 退化状态
在线阅读 下载PDF
基于小波域隐Markov模型的SAR图像滤波方法 被引量:4
19
作者 郦苏丹 张翠 王正志 《国防科技大学学报》 EI CAS CSCD 北大核心 2002年第6期58-63,共6页
在小波域隐Markov模型(HMM)的基础上提出一种新的合成孔径雷达(SAR)图像的滤波方法。首先根据小波变换的内在特征,建立小波域的隐Markov树(HMT)模型,通过EM算法可以获得该HMT模型的参数估计。然后根据SAR图像的统计性质,将SAR图像的乘... 在小波域隐Markov模型(HMM)的基础上提出一种新的合成孔径雷达(SAR)图像的滤波方法。首先根据小波变换的内在特征,建立小波域的隐Markov树(HMT)模型,通过EM算法可以获得该HMT模型的参数估计。然后根据SAR图像的统计性质,将SAR图像的乘法斑点杂噪声在局部范围内近似为加性白高斯噪声,通过最小均方差(MMSE)估计可以获得信号的小波变换值。通过对真实SAR图像的应用,结果说明该方法可以在保存图像细节特征的情况下有效地抑制图像的噪声。 展开更多
关键词 小波域 markov模型 SAR图像 滤波方法 小波变换 合成孔径达 图像处理
在线阅读 下载PDF
一种基于隐Markov模型的异常检测技术 被引量:3
20
作者 安景琦 刘贵全 钱权 《计算机应用》 CSCD 北大核心 2005年第8期1744-1746,共3页
给出了一种建立隐Markov异常检测模型的算法,并从序列支持度分析、序列预测两个方面研究了该模型在异常检测中的应用,通过实验,分析了影响这一检测方法效果和效率的因素。实验表明,该方法能在不需要任何安全方面背景知识的情况下,有效... 给出了一种建立隐Markov异常检测模型的算法,并从序列支持度分析、序列预测两个方面研究了该模型在异常检测中的应用,通过实验,分析了影响这一检测方法效果和效率的因素。实验表明,该方法能在不需要任何安全方面背景知识的情况下,有效地检测出入侵行为。 展开更多
关键词 异常检测 markov模型 系统调用 滑动窗口
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部