期刊文献+
共找到105篇文章
< 1 2 6 >
每页显示 20 50 100
基于卷积门控循环单元网络的储层参数预测方法 被引量:30
1
作者 宋辉 陈伟 +1 位作者 李谋杰 王浩懿 《油气地质与采收率》 CAS CSCD 北大核心 2019年第5期73-78,共6页
储层参数是储层评价的一项重要内容。针对传统储层预测方法难以摆脱线性方程的束缚及预测精度不高的问题,将卷积神经网络与门控循环单元网络相结合,提出了卷积门控循环单元网络模型。该模型不仅具备卷积神经网络局部感知的特性,还具备... 储层参数是储层评价的一项重要内容。针对传统储层预测方法难以摆脱线性方程的束缚及预测精度不高的问题,将卷积神经网络与门控循环单元网络相结合,提出了卷积门控循环单元网络模型。该模型不仅具备卷积神经网络局部感知的特性,还具备门控循环单元网络长期记忆的功能,从而具有表达数据时空特征的能力。基于某井区A井已知井段测井资料建立卷积门控循环单元网络孔隙度预测模型,预测该井区未知深度段的孔隙度,并提出变学习率训练方法。实验证明,与单一的卷积神经网络模型、门控循环单元网络模型相比,卷积门控循环单元网络模型能够更有效地提取数据特征,预测精度更高,可为储层参数的预测提供新的思路。 展开更多
关键词 储层参数预测 孔隙度 深度学习 卷积神经网络 循环神经网络 门控循环单元网络
在线阅读 下载PDF
融合自注意力机制与门控循环单元网络的宽工况锂离子电池SOC估计 被引量:2
2
作者 管鸿盛 钱诚 +2 位作者 徐炳辉 孙博 任羿 《储能科学与技术》 CAS CSCD 北大核心 2023年第7期2229-2237,共9页
准确估计宽工况条件下的锂离子电池荷电状态(SOC)对于电动汽车的运行安全性和可靠性至关重要,是电池管理系统最重要的任务之一。本工作充分利用门控循环单元(GRU)神经网络短时处理能力与注意力机制(SAM)长时序特征提取能力,提出了一种融... 准确估计宽工况条件下的锂离子电池荷电状态(SOC)对于电动汽车的运行安全性和可靠性至关重要,是电池管理系统最重要的任务之一。本工作充分利用门控循环单元(GRU)神经网络短时处理能力与注意力机制(SAM)长时序特征提取能力,提出了一种融合SAM与GRU的神经网络模型学习锂离子电池可测参数(电压、电流)与其SOC的非线性映射关系,实现了高精度的SOC估计,从而解决锂离子电池SOC的长序列相关特征难以有效表征问题。通过北京公交动态应力测试(BBDST)数据的验证表明,与传统GRU网络相比,本文提出的SAM-GRU神经网络模型对于不同放电倍率、环境温度以及放电倍率-环境温度混合工况下工作的锂离子电池均取得了更准确的SOC估计,估计精度提升分别不小于26%、25%和11%。 展开更多
关键词 锂离子电池 荷电状态 自注意力机制 门控循环单元神经网络
在线阅读 下载PDF
采用门控循环单元神经网络和多特征融合的铣削刀具磨损监测 被引量:1
3
作者 葛慧 韩林池 +7 位作者 麻俊方 宋清华 王润琼 刘战强 杜宜聪 王兵 蔡玉奎 赵金富 《机械科学与技术》 CSCD 北大核心 2024年第4期667-673,共7页
为实现汽车发动机缸盖生产中刀具磨损状态的监测,提高刀具磨损监测方法的计算效率和识别精度,基于门控循环单元神经网络和多特征融合方法提出了面向铣刀后刀面磨损带宽度识别的刀具状态监测方法。通过铣削力信号数据对所提出方法的有效... 为实现汽车发动机缸盖生产中刀具磨损状态的监测,提高刀具磨损监测方法的计算效率和识别精度,基于门控循环单元神经网络和多特征融合方法提出了面向铣刀后刀面磨损带宽度识别的刀具状态监测方法。通过铣削力信号数据对所提出方法的有效性进行了验证,分析了不同超参数设置对模型识别精度的影响机制,给出了最优超参数,实现了对铣削刀具磨损的精确识别。 展开更多
关键词 刀具磨损 铣削力信号 状态监测 门控循环单元神经网络
在线阅读 下载PDF
基于双向门控循环单元的脱硫系统pH预测模型
4
作者 高钾 田雪峰 +2 位作者 彭献永 蒋甲丁 徐敏 《科学技术与工程》 北大核心 2025年第13期5535-5543,共9页
针对石灰石-石膏湿法烟气脱硫系统(wet flue gas desulfurization, WFGD)工作过程中浆液pH难以精准测量、不利于WFGD作业的问题,建立一种基于双向门控循环单元的脱硫系统pH预测模型。首先,对原始数据进行清洗和归一化处理;其次,基于最... 针对石灰石-石膏湿法烟气脱硫系统(wet flue gas desulfurization, WFGD)工作过程中浆液pH难以精准测量、不利于WFGD作业的问题,建立一种基于双向门控循环单元的脱硫系统pH预测模型。首先,对原始数据进行清洗和归一化处理;其次,基于最大信息系数分析得出13个特征值为输入变量,pH为输出变量,并建立浆液pH模型;最后,运行模型,并对结果进行评价。研究结果显示,与长短期记忆和门控循环相比,所选用的数学模型的平均绝对误差分别下降了11.95%、24.92%,均方根误差分别下降了10.64%、19.49%,决定系数分别提高了1.79%、3.08%。表明基于双向门控循环单元的pH预测模型具有较高的精确度和稳定性,具有工程应用价值,为现有脱硫塔pH预测模型提供了工程参考。 展开更多
关键词 石灰石-石膏湿法烟气脱硫系统 双向门控循环单元神经网络 预测模型 浆液pH
在线阅读 下载PDF
针对小型鸟类目标的基于门控循环单元的扩展卡尔曼跟踪方法
5
作者 韩冰 王红昌 +2 位作者 苏志刚 郝敬堂 赵欣怡 《信号处理》 CSCD 北大核心 2024年第5期944-956,共13页
基于激光雷达的小型鸟类的跟踪监视是一种新的实现机场及其周边空域鸟情监测预警的关键技术。针对激光雷达采样频率低引起的目标状态跟踪误差大、模型适应性低的问题,本文提出了一种基于门控循环单元的目标状态估计扩展卡尔曼跟踪方法... 基于激光雷达的小型鸟类的跟踪监视是一种新的实现机场及其周边空域鸟情监测预警的关键技术。针对激光雷达采样频率低引起的目标状态跟踪误差大、模型适应性低的问题,本文提出了一种基于门控循环单元的目标状态估计扩展卡尔曼跟踪方法。该方法通过融合深度学习网络对非线性运动的预测能力和扩展卡尔曼滤波对于随机噪声的抑制能力,实现了对于无法准确建模的非线性运动鸟类目标在低采样率条件下的跟踪。针对深度学习网络为隐性表达模型难以与扩展卡尔曼融合的问题,提出近似一步转移矩阵估计方法,将深度学习网络的预测转化为显性状态转移模型,使得跟踪方法中预测与滤波估计形成循环迭代。本文在公开的鸽子飞行轨迹数据集上进行仿真验证表明,所提方法在不同采样频率条件下的跟踪效果均优于传统跟踪算法,且在低采样频率下相对于已有方法具有超过25.5%跟踪误差性能提升,所提方法能够实现基于激光雷达的鸟类目标跟踪。 展开更多
关键词 鸟类目标跟踪 门控循环单元网络 扩展卡尔曼滤波 激光雷达
在线阅读 下载PDF
基于双向门控变分编码回归网络的涡扇发动机剩余寿命预测
6
作者 徐浩 王波 +2 位作者 张猛 杨文龙 汪超 《计算机集成制造系统》 北大核心 2025年第2期616-626,共11页
针对涡扇发动机运行工况复杂,难以提取高维度、多参数监测数据的退化时序特征,从而影响模型预测性能的问题,提出一种基于双向门控变分编码回归网络的剩余使用寿命预测模型。首先在变分编码器(VAE)网络的编码端引入双向门控循环单元网络(... 针对涡扇发动机运行工况复杂,难以提取高维度、多参数监测数据的退化时序特征,从而影响模型预测性能的问题,提出一种基于双向门控变分编码回归网络的剩余使用寿命预测模型。首先在变分编码器(VAE)网络的编码端引入双向门控循环单元网络(BiGRU),充分挖掘多维度退化数据中的隐藏时序特征;其次重构变分编码器模型的解码器为回归网络,利用变分编码器潜在空间中的退化特征训练回归网络,并在损失函数中联合KL散度和回归误差来提高剩余使用寿命预测精度。为验证所提预测模型的高效性,在公开涡扇发动机数据集上与其他预测模型进行对比,验证了所提模型具有更优的预测精度。 展开更多
关键词 剩余寿命预测 变分编码器 双向门控循环单元网络 回归网络 涡扇发动机
在线阅读 下载PDF
基于门控循环单元神经网络和Huber-M估计鲁棒卡尔曼滤波融合方法的锂离子电池荷电状态估算方法 被引量:48
7
作者 李超然 肖飞 +2 位作者 樊亚翔 杨国润 唐欣 《电工技术学报》 EI CSCD 北大核心 2020年第9期2051-2062,共12页
锂离子电池作为重要的储能元件,其荷电状态(SOC)直接影响所在系统的运行状态。为了实现对锂离子电池SOC的精确估算,提出一种基于门控循环单元神经网络(GRU-RNN)和Huber-M估计鲁棒卡尔曼滤波(HKF)融合方法的锂离子电池SOC估算模型。该方... 锂离子电池作为重要的储能元件,其荷电状态(SOC)直接影响所在系统的运行状态。为了实现对锂离子电池SOC的精确估算,提出一种基于门控循环单元神经网络(GRU-RNN)和Huber-M估计鲁棒卡尔曼滤波(HKF)融合方法的锂离子电池SOC估算模型。该方法利用Huber-M估计改进卡尔曼滤波器的鲁棒性,并将基于GRU-RNN所估算的锂离子电池SOC值作为改进卡尔曼滤波器的观测量。在两组锂离子电池数据集上分别进行锂离子电池SOC估算实验。实验结果表明,基于GRU-RNN和HKF融合方法的锂离子电池SOC估算模型不仅能够准确地实现锂离子电池SOC估算,而且能够降低测量误差及异常值对估算结果的影响,使锂离子电池SOC估算结果快速且精确收敛。 展开更多
关键词 锂电池 荷电状态 门控循环单元神经网络 卡尔曼滤波
在线阅读 下载PDF
基于门控循环单元神经网络的储层孔渗饱参数预测 被引量:22
8
作者 王俊 曹俊兴 +2 位作者 尤加春 刘杰 周欣 《石油物探》 EI CSCD 北大核心 2020年第4期616-627,共12页
孔隙度、渗透率和饱和度等物性参数是表征储层质量的重要参数,也是储层评价的重要依据。根据测井数据估算岩石的孔隙度、渗透率和饱和度参数,进而评价储层,是测井解释的基本内容。作为一种适于解决非线性和时序性问题的新型深度学习算法... 孔隙度、渗透率和饱和度等物性参数是表征储层质量的重要参数,也是储层评价的重要依据。根据测井数据估算岩石的孔隙度、渗透率和饱和度参数,进而评价储层,是测井解释的基本内容。作为一种适于解决非线性和时序性问题的新型深度学习算法,门控循环单元(gated recurrent unit,GRU)神经网络算法能较好地反映出孔渗饱参数与测井数据之间的非线性映射关系以及不同深度历史数据之间的关联。基于GRU神经网络的储层孔渗饱参数预测方法首先采用基于Copula函数的相关性测度法筛选与孔渗饱参数关联度较高的测井参数,而后利用GRU神经网络建立测井数据与孔渗饱参数之间的非线性映射关系。对四川盆地某探区实际测井数据进行了GRU神经网络储层孔渗饱参数预测的模型训练和预测试验,最后将预测结果与多元回归分析、循环神经网络等方法的预测结果进行比较,结果表明,以均方根误差和Pearson相关系数为评价指标,基于门控循环单元神经网络的储层孔渗饱参数预测方法效果优于其它方法。 展开更多
关键词 相关性分析 COPULA函数 循环神经网络 门控循环单元神经网络 孔隙度 渗透率 饱和度 储层预测
在线阅读 下载PDF
考虑迟滞特性的卡尔曼滤波和门控循环单元神经网络的锂离子电池SOC联合估计 被引量:11
9
作者 胡明辉 朱广曜 +1 位作者 刘长贺 唐国峰 《汽车工程》 EI CSCD 北大核心 2023年第9期1688-1701,共14页
由于迟滞特性的存在,电池管理系统难以准确获得开路电压(OCV)与荷电状态(SOC)之间的状态关系。为有效地运行和管理动力电池,本文研究了考虑迟滞特性的锂离子电池模型,选用带有遗忘因子的递推最小二乘法进行参数在线辨识。提出了一种联... 由于迟滞特性的存在,电池管理系统难以准确获得开路电压(OCV)与荷电状态(SOC)之间的状态关系。为有效地运行和管理动力电池,本文研究了考虑迟滞特性的锂离子电池模型,选用带有遗忘因子的递推最小二乘法进行参数在线辨识。提出了一种联合门控循环单元(GRU)神经网络和自适应扩展卡尔曼滤波(AEKF)的SOC估计,分别以AEKF和GRU神经网络的估计结果为模型值和测量值,通过卡尔曼滤波(KF)得到最终的SOC估计结果,并作为下一时刻AEKF的输入。结果表明,常温环境下考虑迟滞特性的模型对端电压预测及联合估计法对SOC估计的均方根误差(RMSE)分别在0.5 mV和0.64%以内;低温及变温环境下端电压预测及SOC估计的RMSE分别在0.9 mV和0.72%以内。考虑迟滞特性的模型及联合估计法具有良好的精度和鲁棒性。 展开更多
关键词 锂离子电池 迟滞特性 荷电状态 门控循环单元神经网络 自适应扩展卡尔曼滤波
在线阅读 下载PDF
基于注意力机制—门控循环单元—BP神经网络的智能多工序工艺参数关联预测 被引量:2
10
作者 阴艳超 张曦 +1 位作者 唐军 张万达 《计算机集成制造系统》 EI CSCD 北大核心 2023年第2期487-502,共16页
鉴于流程制造工序间能质流耦合严重,性能指标影响因素众多,工艺参数时序特征显著,现有制造模式下难以精准预测产品质量,在分析流程制造工艺性能指标多维、强时序、关联耦合特征的基础上,提出一种基于注意力机制—门控循环单元-BP神经网... 鉴于流程制造工序间能质流耦合严重,性能指标影响因素众多,工艺参数时序特征显著,现有制造模式下难以精准预测产品质量,在分析流程制造工艺性能指标多维、强时序、关联耦合特征的基础上,提出一种基于注意力机制—门控循环单元-BP神经网络(Attention AM-GRU-BPNN)的多工序耦合参数关联预测方法。首先采用互信息方法筛选多态异构生产数据作为输入,建立ConvGRU自编码器,通过无监督学习对过程数据、工艺参数、操作参数等进行时序特征提取,同时引入时序注意力机制提取不同工序的耦合关联特征并进行向量嵌入,为不同工序的工艺参数分配注意力权重。在此基础上,设计Attention网络自学习不同时刻下工艺关联特征对质量性能指标的影响差异,再通过门控循环单元网络对重要的关联特征进行增强,并按照时序特征对单工序预测模型进行聚合,实现多工序时序特征融合,最后通过输出层BPNN神经网络精准预测产品工艺质量。实验表明,AM-GRU-BPNN有效提高了预测精度,从多工序角度为生产线工序的加工过程控制提供了依据。 展开更多
关键词 流程制造 多工序耦合 注意力机制—门控循环单元-BP神经网络 时序特征融合 关联预测
在线阅读 下载PDF
基于改进卷积-门控网络及Informer的两种中长期风电功率预测方法
11
作者 任鑫 王一妹 +3 位作者 王华 周利 葛畅 韩爽 《现代电力》 北大核心 2025年第3期542-549,共8页
为解决常规时序预测方法在长序列预测场景下表现较差的问题,从时间分辨率降维以及加强序列长期依赖特征挖掘的角度出发,提出两种中长期功率预测模型建模方法,实现了跨度10天、时间分辨率为15min的功率预测。一方面,提出改进卷积神经网络... 为解决常规时序预测方法在长序列预测场景下表现较差的问题,从时间分辨率降维以及加强序列长期依赖特征挖掘的角度出发,提出两种中长期功率预测模型建模方法,实现了跨度10天、时间分辨率为15min的功率预测。一方面,提出改进卷积神经网络-门控循环单元(convolutional neural network-gate recurrent unit,CNN-GRU)的时间尺度降维模型,通过CNN模块及GRU模块分别实现了长时间序列的融合和还原,以及降维后时间序列的预测;另一方面,基于Informer网络的多头注意力机制实现了序列长期依赖特征的挖掘。算例结果表明,两种方法在不同的场景下有着不同的适应性,在第10日的准确率和合格率分别达到74.21%/73.47%、71.81%/74.48%,与常规GRU、CNN、时间卷积网络模型相比,预测精度提升明显,预测效果良好。 展开更多
关键词 中长期功率预测 长序列预测 卷积神经网络-门控循环单元 INFORMER 多头注意力
在线阅读 下载PDF
基于变分模态分解和门控循环单元神经网络的变压器油中溶解气体预测模型 被引量:27
12
作者 谢乐 仇炜 +3 位作者 李振伟 刘洋 蒋启龙 刘东 《高电压技术》 EI CAS CSCD 北大核心 2022年第2期653-660,共8页
油中溶解气体分析是变压器早期故障诊断的一种有效方法,对变压器油中溶解气体进行精准预测,可为变压器早期故障监测和预警提供理论依据。为此本研究提出了一种基于变分模态分解和门控循环单元神经网络的变压器油中溶解气体预测模型。首... 油中溶解气体分析是变压器早期故障诊断的一种有效方法,对变压器油中溶解气体进行精准预测,可为变压器早期故障监测和预警提供理论依据。为此本研究提出了一种基于变分模态分解和门控循环单元神经网络的变压器油中溶解气体预测模型。首先对变压器原始油中溶解气体体积分数时间序列进行变分模态分解,将其分解为各子序列,消除其不平稳性的影响;然后分别建立门控循环单元神经网络预测模型对各子序列进行单步和多步预测;最后将预测得到的各子序列进行叠加重构从而得到对变压器油中溶解气体体积分数的单步和多步预测。算例分析表明,该模型单步预测的平均绝对误差和均方根误差分别为0.0576和0.0684,多步预测的平均绝对误差和均方根误差分别为0.1679和0.2041。相比于其他预测模型,该研究所提出模型在单步和多步预测能力上均有较大提升,为电力变压器监测预警提供了参考。 展开更多
关键词 变分模态分解 门控循环单元神经网络 变压器 油中溶解气体 预测模型
在线阅读 下载PDF
基于多重注意力卷积神经网络双向门控循环单元的机械故障诊断方法研究 被引量:17
13
作者 程建刚 毕凤荣 +3 位作者 张立鹏 李鑫 杨晓 汤代杰 《内燃机工程》 CAS CSCD 北大核心 2021年第4期77-83,92,共8页
为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断... 为解决传统机械故障诊断方法需要人工提取特征的不足,提出一种基于多重注意力卷积神经网络双向门控循环单元(multiple attention-convolutional neural networks-bidirectional gated recurrent unit,MA-CNN-BiGRU)的端到端的故障诊断方法。首先将原始时域数据输入卷积神经网络(convolutional meural networks,CNN)进行初步特征提取并降维,然后将结果重组输入双向门控循环单元(bidirectional gated recurrent unit,BiGRU),可以有效地解决BiGRU对于过长序列数据处理困难的问题。采用美国凯斯西储大学开源轴承数据集进行训练,确定了最佳卷积层数和最佳样本长度约减比例分别为2和1/8。同时,通过在CNN和BiGRU中分别加入卷积注意力模块(convolutional block attention module,CBAM)和序列注意力模块(sequence attention module,SAM),进一步加强了模型对于关键信息的提取能力。最后实测柴油机故障振动信号试验表明:MA-CNN-BiGRU模型可以实现端到端的故障诊断,与变分模态分解(variational mode decomposition,VMD)核模糊C均值聚类算法(VMD-kernel fuzzy C-means clustering,VMD-KFCM)、VMD-反向传播神经网络(back propagation neural network,BPNN)和一维CNN等方法进行对比,MA-CNN-BiGRU模型的故障诊断性能更优。 展开更多
关键词 注意力 故障诊断 多重注意力卷积神经网络双向门控循环单元(MA-CNN-BiGRU) 端到端
在线阅读 下载PDF
基于门控循环单元神经网络的箱型梁结构裂纹损伤检测方法 被引量:7
14
作者 骆撷冬 马栋梁 +1 位作者 张松林 王德禹 《中国舰船研究》 CSCD 北大核心 2022年第4期194-203,共10页
[目的]随着智能船舶的发展,传统裂纹损伤检测方法已难以满足检测需求,为此,提出一种基于门控循环单元(GRU)神经网络的箱型梁结构裂纹损伤实时检测方法。[方法]通过基于Python语言的ABAQUS二次开发技术,建立箱型梁裂纹损伤模型,计算其在... [目的]随着智能船舶的发展,传统裂纹损伤检测方法已难以满足检测需求,为此,提出一种基于门控循环单元(GRU)神经网络的箱型梁结构裂纹损伤实时检测方法。[方法]通过基于Python语言的ABAQUS二次开发技术,建立箱型梁裂纹损伤模型,计算其在动态高斯白噪声激励下的加速度响应。通过数据裁剪技术扩充原始数据之后生成数据集,并考虑噪声的影响。建立基于GRU的箱型梁裂纹损伤检测模型,直接将加速度响应数据集作为输入,以最小损失函数值为目标来训练模型,并与基于小波包变换的多层感知机神经网络(WPT-MLP)进行对比。[结果]结果显示,所提出的GRU模型在损伤位置和损伤长度的检测上相比WPT-MLP检测精度更高,对噪声的敏感程度更低,且在对损伤位置的近似预测方面精度也较高。[结论]研究证明了GRU神经网络在包含多个板的箱型梁结构裂纹损伤检测中的适用性。 展开更多
关键词 门控循环单元神经网络 箱型梁 裂纹检测 噪声
在线阅读 下载PDF
基于门控循环单元神经网络的测井曲线预测方法 被引量:7
15
作者 滕建强 邱萌 +3 位作者 杨明任 申辉林 曲萨 孙启鹏 《油气地质与采收率》 CAS CSCD 北大核心 2023年第1期93-100,共8页
为了减少泥浆侵入对测井曲线的影响,许多油田采用随钻测井技术,需先预测未钻地层测井曲线,这对随钻测井具有非常重要的指导作用。为此,提出一种基于门控循环单元神经网络(GRU)预测未钻地层测井曲线的方法,该模型将长短期记忆神经网络(LS... 为了减少泥浆侵入对测井曲线的影响,许多油田采用随钻测井技术,需先预测未钻地层测井曲线,这对随钻测井具有非常重要的指导作用。为此,提出一种基于门控循环单元神经网络(GRU)预测未钻地层测井曲线的方法,该模型将长短期记忆神经网络(LSTM)的输入门和遗忘门合并成更新门,输出门变成重置门,使模型结构简单,不易出现过拟合现象,保留LSTM模型的长时记忆功能,且能有效缓解梯度消失或梯度爆炸问题。以新疆油田直井和南海西部油田随钻测井的实际测井数据为例,选取已钻地层以及邻井的自然伽马、深感应电阻率、声波时差、密度和井径5条测井曲线数据作为训练样本输入到LSTM和GRU模型中进行学习训练,将训练好的模型用于预测未钻地层的测井曲线。应用结果表明,GRU比LSTM模型在新疆油田和南海西部油田预测测井曲线的平均相关系数分别提高13.78%和12.13%,平均均方根误差分别下降27.08%和42.17%,GRU模型能够准确地预测未钻地层测井曲线的变化趋势。 展开更多
关键词 随钻测井 长时记忆 测井曲线预测 未钻地层 门控循环单元神经网络
在线阅读 下载PDF
基于门控循环单元神经网络的大跨径斜拉桥索力预测 被引量:4
16
作者 郭新宇 方圣恩 《振动工程学报》 EI CSCD 北大核心 2023年第6期1480-1484,共5页
拉索索力的改变直接反映斜拉桥结构体系受力状态的变化,因此索力监测对斜拉桥健康评估具有重要意义。然而现有关于索力的研究大多为索力识别,难以做到根据历史索力数据实现对未来索力的预测。为此,提出一种基于门控循环单元(GRU)神经网... 拉索索力的改变直接反映斜拉桥结构体系受力状态的变化,因此索力监测对斜拉桥健康评估具有重要意义。然而现有关于索力的研究大多为索力识别,难以做到根据历史索力数据实现对未来索力的预测。为此,提出一种基于门控循环单元(GRU)神经网络的索力预测方法:利用GRU神经网络对时序型数据的处理能力以及索力数据较强的序列化特性,搭建基于GRU神经网络的索力预测框架,该预测框架包含输入层、GRU隐藏层与输出层;利用实桥连续采集的索应力时程数据作为训练及验证样本,对样本进行数据切片和归一化;搭建能够实现对该桥未来索力进行预测的GRU神经网络,结合梯度下降优化算法进行网络计算。结果表明所提方法对不同长度的拉索都具有较好的预测效果。 展开更多
关键词 大跨径斜拉桥 索力预测 门控循环单元神经网络 数据切片和归一化
在线阅读 下载PDF
基于PCA-RF协同的GRU网络滚动轴承退化趋势预测
17
作者 张霞 梁海波 +4 位作者 高原 万夫 李泉昌 仇芝 缐傲航 《现代制造工程》 北大核心 2025年第3期132-140,共9页
针对旋转机械设备的滚动轴承退化趋势预测依赖于先验知识、预测精度低等问题,提出基于主成分分析(Principal Component Analysis,PCA)和随机森林(Random Forest,RF)协同的门控循环单元(Gated Recurrent Unit,GRU)网络的滚动轴承退化趋... 针对旋转机械设备的滚动轴承退化趋势预测依赖于先验知识、预测精度低等问题,提出基于主成分分析(Principal Component Analysis,PCA)和随机森林(Random Forest,RF)协同的门控循环单元(Gated Recurrent Unit,GRU)网络的滚动轴承退化趋势预测方法。首先,优选基于多元统计的高维特征并利用PCA进行聚类降维,构建滚动轴承健康指标;其次,以构建的健康指标为基准,引入RF模型拟合滚动轴承性能退化曲线;最后,建立基于PCA-RF协同的GRU网络滚动轴承退化趋势预测模型,完成滚动轴承状态评估。实验结果表明,所提方法计算的健康指标能够有效反映滚动轴承退化状态,时间趋势性达到0.9991;基于PCA-RF协同的GRU模型能准确地实现滚动轴承退化趋势预测,在不同数据集上的最大单步和多步预测均方根误差分别为0.0184和0.0478。 展开更多
关键词 滚动轴承 退化趋势预测 主成分分析 随机森林 门控循环单元网络 健康指标
在线阅读 下载PDF
基于MSCNN-GRU神经网络补全测井曲线和可解释性的智能岩性识别 被引量:1
18
作者 王婷婷 王振豪 +2 位作者 赵万春 蔡萌 史晓东 《石油地球物理勘探》 北大核心 2025年第1期1-11,共11页
针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问... 针对传统岩性识别方法在处理测井曲线缺失、准确性以及模型可解释性等方面的不足,提出了一种基于MSCNN-GRU神经网络补全测井曲线和Optuna超参数优化的XGBoost模型的可解释性的岩性识别方法。首先,针对测井曲线在特定层段丢失或失真的问题,引入了基于多尺度卷积神经网络(MSCNN)与门控循环单元(GRU)神经网络相结合的曲线重构方法,为后续的岩性识别提供了准确的数据基础;其次,利用小波包自适应阈值方法对数据进行去噪和归一化处理,以减少噪声对岩性识别的影响;然后,采用Optuna框架确定XGBoost算法的超参数,建立了高效的岩性识别模型;最后,利用SHAP可解释性方法对XGBoost模型进行归因分析,揭示了不同特征对于岩性识别的贡献度,提升了模型的可解释性。结果表明,Optuna-XGBoost模型综合岩性识别准确率为79.91%,分别高于支持向量机(SVM)、朴素贝叶斯、随机森林三种神经网络模型24.89%、12.45%、6.33%。基于Optuna-XGBoost模型的SHAP可解释性的岩性识别方法具有更高的准确性和可解释性,能够更好地满足实际生产需要。 展开更多
关键词 岩性识别 多尺度卷积神经网络 门控循环单元神经网络 XGBoost 超参数优化 可解释性
在线阅读 下载PDF
基于改进卷积门控循环神经网络的刀具磨损状态识别 被引量:3
19
作者 潘晓明 周学良 吴琪文 《工具技术》 北大核心 2023年第7期146-152,共7页
刀具状态监测直接影响加工质量,对保障加工安全与提高生产效率起着重要作用。针对刀具加工信号分析较为复杂与深度学习求解耗时高的问题,提出一种基于改进卷积门控神经网络的刀具磨损状态识别网络模型。借助卷积神经网络(CNN)实现对数... 刀具状态监测直接影响加工质量,对保障加工安全与提高生产效率起着重要作用。针对刀具加工信号分析较为复杂与深度学习求解耗时高的问题,提出一种基于改进卷积门控神经网络的刀具磨损状态识别网络模型。借助卷积神经网络(CNN)实现对数据中空间特性的获取,并利用双向门控循环单元(BiGRU)中数据时序特征处理能力提取原始振动信号的序列特征,将极限学习机(ELM)作为分类器进行刀具磨损状态识别。实验结果表明,在刀具磨损数据样本数量有限的情况下,该方法对于信号数据有较强的分析能力,运算速度快,能达到更好的识别精度。 展开更多
关键词 刀具磨损 状态监测 卷积神经网络 双向门控循环单元网络 极限学习机
在线阅读 下载PDF
基于门控循环单元的全断面掘进机稳定段掘进性能预测 被引量:2
20
作者 张弛 李艳 +2 位作者 王鹏 刘沛 梁科森 《科学技术与工程》 北大核心 2022年第32期14443-14450,共8页
全断面隧道掘进机(tunnel boring machine, TBM)一个正常掘进循环分为空推段、上升段和稳定段3个阶段,其中稳定掘进段为主要施工阶段,稳定段掘进性能的好坏是TBM掘进的关键。为实现TBM安全高效掘进,建立一种基于门控循环单元(gated recu... 全断面隧道掘进机(tunnel boring machine, TBM)一个正常掘进循环分为空推段、上升段和稳定段3个阶段,其中稳定掘进段为主要施工阶段,稳定段掘进性能的好坏是TBM掘进的关键。为实现TBM安全高效掘进,建立一种基于门控循环单元(gated recurrent unit, GRU)神经网络的预测模型,预测TBM稳定段掘进性能。模型以新疆某供水工程Ⅱ标段TBM施工数据为依托,5种掘进循环上升段主要参数的时间序列数据作为主要输入,围岩等级作为辅助输入来考虑岩体对掘进性能的影响,输出为稳定段的总推进力和刀盘扭矩,为稳定段TBM性能预判提供参考。为显示预测效果,对比传统循环神经网络(recurrent neural network, RNN)预测模型,并分析不同长度时间序列输入对模型预测精度的影响。结果表明:GRU模型预测拟合优度均在0.9以上,平均绝对百分比误差均小于12.25%,同时能够适用不同长度时序输入。由此可见,所建模型具有较高预测精度,泛化能力较好,能够辅助预判掘进机稳定段性能。 展开更多
关键词 地下工程 全断面掘进机(TBM) 门控循环单元(GRU)神经网络 掘进性能预测 围岩等级
在线阅读 下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部