锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识...锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识精度低、收敛速度慢的问题。为此,将电路分析法与FFRLS相结合,提出基于改进初值带遗忘因子的递推最小二乘法(improved initial value-FFRLS,IIV-FFRLS)。首先,通过离线辨识得到各荷电状态点对应的等效电路模型参数并进行多项式拟合;然后,利用初始开路电压(open circuit voltage,OCV)和OCV-SOC曲线获得初始SOC,代入参数拟合函数得到初始参数;最后,将初始参数带入递推公式得到IIV-FFRLS迭代初始值。对4种锂电池工况进行参数辨识,结果表明:与传统方法相比,IIV-FFRLS的平均相对误差、收敛时间分别减小58%、23%以上;IIV-FFRLS具有更高的辨识精度与更快的收敛速度。展开更多
为了实现永磁同步直线电机PMSLM(permanent magnet synchronous linear motor)高精度的多电气参数在线辨识,提出了一种基于双模型的递推最小二乘电气参数在线辨识算法。首先,根据电机的dq轴电压方程分别建立了辨识定子电阻、永磁体磁链...为了实现永磁同步直线电机PMSLM(permanent magnet synchronous linear motor)高精度的多电气参数在线辨识,提出了一种基于双模型的递推最小二乘电气参数在线辨识算法。首先,根据电机的dq轴电压方程分别建立了辨识定子电阻、永磁体磁链的模型1和辨识q轴电感、d轴电感的模型2,并将2个辨识模型循环结合。其次,基于上述双模型结构,采用递推最小二乘算法实现电气参数在线辨识,并针对PMSLM运行时存在大量动态过程的特性,提出一种具有饱和特性的分段变遗忘因子;然后,对功率开关非理想因素导致的误差电压进行补偿,进一步提高了辨识的精准度;最后,仿真和实验结果证明了该辨识算法的有效性,且具有收敛速度快、辨识结果精度高、多工况适用等优点。展开更多
为了有效改善燃料电池混合动力系统的能耗,减少燃料电池性能衰减,保持辅助动力源的荷电状态(state of charge,SOC),提出一种基于遗忘因子递推最小二乘算法(forgetting factor recursive least square,FFRLS)的在线辨识方法和极小值原理...为了有效改善燃料电池混合动力系统的能耗,减少燃料电池性能衰减,保持辅助动力源的荷电状态(state of charge,SOC),提出一种基于遗忘因子递推最小二乘算法(forgetting factor recursive least square,FFRLS)的在线辨识方法和极小值原理的综合能量管理方法。该方法能根据在线辨识的结果和直流母线需求功率,完成对主动力源及辅助动力源的功率分配工作,并与基于离线辨识的算法结果以及等效氢耗最小能量管理方法(equivalent consumption minimization strategy,ECMS)进行对比分析。结果表明,该方法对等效氢耗的优化比离线以及ECMS的效果分别提升了6.33%和4.35%,对燃料电池性能衰减则分别优化了4.72%和6.98%,并能更好地维持辅助动力源的SOC。展开更多
电动助力转向(electric power steering,EPS)系统具有非线性和时变性,采用常系数补偿无法实现对转矩的准确跟踪,影响驾驶员手感。文章采用滑模控制器准确跟踪电流,并设计补偿算法,利用带遗忘因子的递推最小二乘(recursive least squares...电动助力转向(electric power steering,EPS)系统具有非线性和时变性,采用常系数补偿无法实现对转矩的准确跟踪,影响驾驶员手感。文章采用滑模控制器准确跟踪电流,并设计补偿算法,利用带遗忘因子的递推最小二乘(recursive least squares,RLS)算法对助力装置进行在线参数辨识,并将辨识得到的结果进行补偿控制,在参数缓慢变化的条件下实现EPS对转矩的准确跟踪。展开更多
为保证燃料电池系统在负载工况变化条件下仍能无扰动地运行在最大效率点,提出一种基于遗忘因子递推最小二乘(forgetting factor recursive least square,FFRLS)在线辨识和Super-Twisting滑模算法的燃料电池系统实时最大效率跟踪方法。...为保证燃料电池系统在负载工况变化条件下仍能无扰动地运行在最大效率点,提出一种基于遗忘因子递推最小二乘(forgetting factor recursive least square,FFRLS)在线辨识和Super-Twisting滑模算法的燃料电池系统实时最大效率跟踪方法。该方法基于非线性曲线拟合原理,根据系统实时测量数据,在单位控制周期内实现对燃料电池最大效率点功率的实时估计。采用Super-Twisting滑模算法,保证燃料电池系统在负载工况变化情况下仍能运行在最大效率点。在搭建的测试平台上,开展了多指标性能测试与对比分析。实验结果表明,与扰动观测(perturb and observe,P&O)算法相比,所提出的方法优势更加明显。另外,针对燃料电池输出存在大扰动问题,与PID控制效果进行了对比实验。实验结果显示:Super-Twisting滑模控制变换器在输入电压大扰动下具有较强的鲁棒性,有利于燃料电池系统长期稳定运行。展开更多
锂电池荷电状态(state of charge,SOC)的准确估计对电池安全监测与能量的高效利用具有重要意义。提出一种新的验证模型,首先对电池新一代汽车合作伙伴(PNGV)模型进行改进,考虑电池充放电的差异,加入了二极管电阻的并联网络来代替传统PNG...锂电池荷电状态(state of charge,SOC)的准确估计对电池安全监测与能量的高效利用具有重要意义。提出一种新的验证模型,首先对电池新一代汽车合作伙伴(PNGV)模型进行改进,考虑电池充放电的差异,加入了二极管电阻的并联网络来代替传统PNGV模型的内阻,在此基础上,增加了一个RC的并联网络来表征电池的动静态特性。以三元锂电池为研究对象,通过遗忘因子最小二乘法(forgetting factor recursive least square,FFRLS)对改进模型进行在线参数辨识,并提出了主充电、放电实验对锂电池工作特性进行仿真分析,通过FFRLS-EKF算法在DST工况下对SOC进行估算。实验结果表明,改进的2RC-PNGV模型能够较好地反映锂电池工作特性,HPPC实验的平均电压误差为0.17%,模型具有较高的精度。主充电过程SOC平均估算误差为0.957%,最大估算误差为5.03%;主放电过程SOC平均估算误差为0.807%,最大估算误差为3.38%,表明改进的2RC-PNGV模型与联合估计算法均可用于SOC实际估算。展开更多
文摘为了实现永磁同步直线电机PMSLM(permanent magnet synchronous linear motor)高精度的多电气参数在线辨识,提出了一种基于双模型的递推最小二乘电气参数在线辨识算法。首先,根据电机的dq轴电压方程分别建立了辨识定子电阻、永磁体磁链的模型1和辨识q轴电感、d轴电感的模型2,并将2个辨识模型循环结合。其次,基于上述双模型结构,采用递推最小二乘算法实现电气参数在线辨识,并针对PMSLM运行时存在大量动态过程的特性,提出一种具有饱和特性的分段变遗忘因子;然后,对功率开关非理想因素导致的误差电压进行补偿,进一步提高了辨识的精准度;最后,仿真和实验结果证明了该辨识算法的有效性,且具有收敛速度快、辨识结果精度高、多工况适用等优点。
文摘为了有效改善燃料电池混合动力系统的能耗,减少燃料电池性能衰减,保持辅助动力源的荷电状态(state of charge,SOC),提出一种基于遗忘因子递推最小二乘算法(forgetting factor recursive least square,FFRLS)的在线辨识方法和极小值原理的综合能量管理方法。该方法能根据在线辨识的结果和直流母线需求功率,完成对主动力源及辅助动力源的功率分配工作,并与基于离线辨识的算法结果以及等效氢耗最小能量管理方法(equivalent consumption minimization strategy,ECMS)进行对比分析。结果表明,该方法对等效氢耗的优化比离线以及ECMS的效果分别提升了6.33%和4.35%,对燃料电池性能衰减则分别优化了4.72%和6.98%,并能更好地维持辅助动力源的SOC。
文摘电动助力转向(electric power steering,EPS)系统具有非线性和时变性,采用常系数补偿无法实现对转矩的准确跟踪,影响驾驶员手感。文章采用滑模控制器准确跟踪电流,并设计补偿算法,利用带遗忘因子的递推最小二乘(recursive least squares,RLS)算法对助力装置进行在线参数辨识,并将辨识得到的结果进行补偿控制,在参数缓慢变化的条件下实现EPS对转矩的准确跟踪。
文摘为保证燃料电池系统在负载工况变化条件下仍能无扰动地运行在最大效率点,提出一种基于遗忘因子递推最小二乘(forgetting factor recursive least square,FFRLS)在线辨识和Super-Twisting滑模算法的燃料电池系统实时最大效率跟踪方法。该方法基于非线性曲线拟合原理,根据系统实时测量数据,在单位控制周期内实现对燃料电池最大效率点功率的实时估计。采用Super-Twisting滑模算法,保证燃料电池系统在负载工况变化情况下仍能运行在最大效率点。在搭建的测试平台上,开展了多指标性能测试与对比分析。实验结果表明,与扰动观测(perturb and observe,P&O)算法相比,所提出的方法优势更加明显。另外,针对燃料电池输出存在大扰动问题,与PID控制效果进行了对比实验。实验结果显示:Super-Twisting滑模控制变换器在输入电压大扰动下具有较强的鲁棒性,有利于燃料电池系统长期稳定运行。
文摘锂电池荷电状态(state of charge,SOC)的准确估计对电池安全监测与能量的高效利用具有重要意义。提出一种新的验证模型,首先对电池新一代汽车合作伙伴(PNGV)模型进行改进,考虑电池充放电的差异,加入了二极管电阻的并联网络来代替传统PNGV模型的内阻,在此基础上,增加了一个RC的并联网络来表征电池的动静态特性。以三元锂电池为研究对象,通过遗忘因子最小二乘法(forgetting factor recursive least square,FFRLS)对改进模型进行在线参数辨识,并提出了主充电、放电实验对锂电池工作特性进行仿真分析,通过FFRLS-EKF算法在DST工况下对SOC进行估算。实验结果表明,改进的2RC-PNGV模型能够较好地反映锂电池工作特性,HPPC实验的平均电压误差为0.17%,模型具有较高的精度。主充电过程SOC平均估算误差为0.957%,最大估算误差为5.03%;主放电过程SOC平均估算误差为0.807%,最大估算误差为3.38%,表明改进的2RC-PNGV模型与联合估计算法均可用于SOC实际估算。