锂电池荷电状态(state of charge,SOC)的准确估计对电池安全监测与能量的高效利用具有重要意义。提出一种新的验证模型,首先对电池新一代汽车合作伙伴(PNGV)模型进行改进,考虑电池充放电的差异,加入了二极管电阻的并联网络来代替传统PNG...锂电池荷电状态(state of charge,SOC)的准确估计对电池安全监测与能量的高效利用具有重要意义。提出一种新的验证模型,首先对电池新一代汽车合作伙伴(PNGV)模型进行改进,考虑电池充放电的差异,加入了二极管电阻的并联网络来代替传统PNGV模型的内阻,在此基础上,增加了一个RC的并联网络来表征电池的动静态特性。以三元锂电池为研究对象,通过遗忘因子最小二乘法(forgetting factor recursive least square,FFRLS)对改进模型进行在线参数辨识,并提出了主充电、放电实验对锂电池工作特性进行仿真分析,通过FFRLS-EKF算法在DST工况下对SOC进行估算。实验结果表明,改进的2RC-PNGV模型能够较好地反映锂电池工作特性,HPPC实验的平均电压误差为0.17%,模型具有较高的精度。主充电过程SOC平均估算误差为0.957%,最大估算误差为5.03%;主放电过程SOC平均估算误差为0.807%,最大估算误差为3.38%,表明改进的2RC-PNGV模型与联合估计算法均可用于SOC实际估算。展开更多
为了减小强陀螺效应条件下双框架控制力矩陀螺(double gimbal control moment gyroscope,简称DGCMG)框架伺服系统的非线性摩擦力矩对框架伺服系统控制精度的影响,提出了一种对DGCMG框架伺服系统非线性摩擦力矩精确建模和辨识的方法。分...为了减小强陀螺效应条件下双框架控制力矩陀螺(double gimbal control moment gyroscope,简称DGCMG)框架伺服系统的非线性摩擦力矩对框架伺服系统控制精度的影响,提出了一种对DGCMG框架伺服系统非线性摩擦力矩精确建模和辨识的方法。分析了DGCMG框架伺服系统的动力学方程,在研究内、外框架摩擦力矩随内外框架角速度和陀螺力矩变化规律的基础上,建立了内、外框架摩擦力矩精确的数学模型,并用控制力矩陀螺的实际参数和实验采集数据对摩擦力矩模型参数进行了遗忘因子递推最小二乘法辨识。实验结果验证了所建模型的正确性和辨识结果的准确性,有助于补偿DGCMG框架伺服系统的非线性摩擦力矩,提高框架伺服系统的控制精度。展开更多
文摘锂电池荷电状态(state of charge,SOC)的准确估计对电池安全监测与能量的高效利用具有重要意义。提出一种新的验证模型,首先对电池新一代汽车合作伙伴(PNGV)模型进行改进,考虑电池充放电的差异,加入了二极管电阻的并联网络来代替传统PNGV模型的内阻,在此基础上,增加了一个RC的并联网络来表征电池的动静态特性。以三元锂电池为研究对象,通过遗忘因子最小二乘法(forgetting factor recursive least square,FFRLS)对改进模型进行在线参数辨识,并提出了主充电、放电实验对锂电池工作特性进行仿真分析,通过FFRLS-EKF算法在DST工况下对SOC进行估算。实验结果表明,改进的2RC-PNGV模型能够较好地反映锂电池工作特性,HPPC实验的平均电压误差为0.17%,模型具有较高的精度。主充电过程SOC平均估算误差为0.957%,最大估算误差为5.03%;主放电过程SOC平均估算误差为0.807%,最大估算误差为3.38%,表明改进的2RC-PNGV模型与联合估计算法均可用于SOC实际估算。
文摘为了减小强陀螺效应条件下双框架控制力矩陀螺(double gimbal control moment gyroscope,简称DGCMG)框架伺服系统的非线性摩擦力矩对框架伺服系统控制精度的影响,提出了一种对DGCMG框架伺服系统非线性摩擦力矩精确建模和辨识的方法。分析了DGCMG框架伺服系统的动力学方程,在研究内、外框架摩擦力矩随内外框架角速度和陀螺力矩变化规律的基础上,建立了内、外框架摩擦力矩精确的数学模型,并用控制力矩陀螺的实际参数和实验采集数据对摩擦力矩模型参数进行了遗忘因子递推最小二乘法辨识。实验结果验证了所建模型的正确性和辨识结果的准确性,有助于补偿DGCMG框架伺服系统的非线性摩擦力矩,提高框架伺服系统的控制精度。