为提高小麦病害检测精度,实现将模型方便快速部署到移动端,该研究提出了一种基于改进YOLOv8的轻量化小麦病害检测方法。首先,使用PP-LCNet模型替换YOLOv8网络结构的骨干网络,并在骨干网络层引入深度可分离卷积(depthwise separable conv...为提高小麦病害检测精度,实现将模型方便快速部署到移动端,该研究提出了一种基于改进YOLOv8的轻量化小麦病害检测方法。首先,使用PP-LCNet模型替换YOLOv8网络结构的骨干网络,并在骨干网络层引入深度可分离卷积(depthwise separable convolution, DepthSepConv)结构,减少模型参数量,提升模型检测性能;其次,在颈部网络部分添加全局注意力机制(global attention mechanism, GAM)模块,强化特征中语义信息和位置信息,提高模型特征融合能力;然后,引入轻量级通用上采样内容感知重组(content-aware reassembly of features,CARAFE)模块,提高模型对重要特征的提取能力;最后,使用Wise-IoU(weighted interpolation of sequential evidence for intersection over union)边界损失函数代替原损失函数,提升网络边界框回归性能和对小目标病害的检测效果。试验结果表明,对于大田环境下所采集的小麦病害数据集,改进后模型的参数量及模型大小相比原YOLOv8n基线模型分别降低了12.5%和11.3%,同时精确度(precision)及平均精度均值(mean average precision,m AP)相较于原模型分别提高了4.5和1.9个百分点,优于其他对比目标检测算法,可为小麦病害检测无人机等移动端检测装备的部署和应用提供参考。展开更多
β2肾上腺素受体(β2adrenergic receptor,β2AR)是G蛋白耦联受体(G protein coupled receptors,GPCRs)超家族中的一员,也是研究治疗哮喘的关键药物受体靶标.采用进化踪迹(evolutionary trace,ET)方法分析肾上腺素受体家族跨膜区片段序...β2肾上腺素受体(β2adrenergic receptor,β2AR)是G蛋白耦联受体(G protein coupled receptors,GPCRs)超家族中的一员,也是研究治疗哮喘的关键药物受体靶标.采用进化踪迹(evolutionary trace,ET)方法分析肾上腺素受体家族跨膜区片段序列,识别出了44个保守的残基,然后将β2肾上腺素受体以及受体D130N活性突变体、D79N失活突变体进行分子动力学模拟,试图找出与受体不同功能状态相关的结构动力学特征.发现受体DRY motif中的D130远离R131而转向K149残基这一结构特征与受体活性高度关联,此外,从残基相互作用的变化推断出了受体helix 2,4 and 6伴随着受体活化而发生的运动.这些研究结果对进一步探索β2肾上腺素受体突变体的激活机制以及所诱发疾病的分子机理提供了依据.展开更多
文摘为提高小麦病害检测精度,实现将模型方便快速部署到移动端,该研究提出了一种基于改进YOLOv8的轻量化小麦病害检测方法。首先,使用PP-LCNet模型替换YOLOv8网络结构的骨干网络,并在骨干网络层引入深度可分离卷积(depthwise separable convolution, DepthSepConv)结构,减少模型参数量,提升模型检测性能;其次,在颈部网络部分添加全局注意力机制(global attention mechanism, GAM)模块,强化特征中语义信息和位置信息,提高模型特征融合能力;然后,引入轻量级通用上采样内容感知重组(content-aware reassembly of features,CARAFE)模块,提高模型对重要特征的提取能力;最后,使用Wise-IoU(weighted interpolation of sequential evidence for intersection over union)边界损失函数代替原损失函数,提升网络边界框回归性能和对小目标病害的检测效果。试验结果表明,对于大田环境下所采集的小麦病害数据集,改进后模型的参数量及模型大小相比原YOLOv8n基线模型分别降低了12.5%和11.3%,同时精确度(precision)及平均精度均值(mean average precision,m AP)相较于原模型分别提高了4.5和1.9个百分点,优于其他对比目标检测算法,可为小麦病害检测无人机等移动端检测装备的部署和应用提供参考。
文摘β2肾上腺素受体(β2adrenergic receptor,β2AR)是G蛋白耦联受体(G protein coupled receptors,GPCRs)超家族中的一员,也是研究治疗哮喘的关键药物受体靶标.采用进化踪迹(evolutionary trace,ET)方法分析肾上腺素受体家族跨膜区片段序列,识别出了44个保守的残基,然后将β2肾上腺素受体以及受体D130N活性突变体、D79N失活突变体进行分子动力学模拟,试图找出与受体不同功能状态相关的结构动力学特征.发现受体DRY motif中的D130远离R131而转向K149残基这一结构特征与受体活性高度关联,此外,从残基相互作用的变化推断出了受体helix 2,4 and 6伴随着受体活化而发生的运动.这些研究结果对进一步探索β2肾上腺素受体突变体的激活机制以及所诱发疾病的分子机理提供了依据.