期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
串联质谱法在过氧化物酶体病筛查中的应用 被引量:1
1
作者 王燕敏 田国力 +2 位作者 纪伟 王四美 张潇分 《浙江大学学报(医学版)》 CAS CSCD 北大核心 2021年第4期481-486,共6页
目的:探讨串联质谱法检测极长链酰基肉碱(VLCAC)和溶血磷脂酰胆碱(LPC)在过氧化物酶体病筛查中的价值。方法:选取2017年1月至2021年3月以发育迟缓等神经系统异常就诊于上海市儿童医院,根据临床症状、磁共振成像和基因检测结果明确诊断... 目的:探讨串联质谱法检测极长链酰基肉碱(VLCAC)和溶血磷脂酰胆碱(LPC)在过氧化物酶体病筛查中的价值。方法:选取2017年1月至2021年3月以发育迟缓等神经系统异常就诊于上海市儿童医院,根据临床症状、磁共振成像和基因检测结果明确诊断为X-连锁肾上腺脑白质营养不良(X-ALD)患儿14例和脑肝肾综合征(ZS)患儿4例。另选取同年龄段体检儿童200名为健康对照组。使用含稳定同位素内标的溶剂萃取所有对象干血斑标本中的VLCAC和LPC,直接采用串联质谱法检测二十碳酰基肉碱(C20)、二十二碳酰基肉碱(C22)、二十四碳酰基肉碱(C24)、二十六碳酰基肉碱(C26)、二十碳溶血磷脂酰胆碱(C20:0-LPC)、二十二碳溶血磷脂酰胆碱(C22:0-LPC)、二十四碳溶血磷脂酰胆碱(C24:0-LPC)和二十六碳溶血磷脂酰胆碱(C26:0-LPC)水平,并计算C24/C20、C24/C22、C26/C20、C26/C22、C24:0-LPC/C20:0-LPC、C24:0-LPC/C22:0-LPC、C26:0-LPC/C20:0-LPC、C26:0-LPC/C22:0-LPC比值。采用Kruskal-Wallis H检验和Mann-Whitney U检验比较各组间VLCAC和LPC各指标检测值及比值,采用偏最小二乘法和变量投影重要度权重评分分析各指标对判断疾病的贡献度。结果:除C24:0-LPC/C20:0-LPC外,所有指标和比值在各组间差异均有统计学意义(P<0.05或P<0.01);X-ALD组与健康对照组、ZS组与健康对照组间,各指标有不同程度的差异,但X-ALD组与ZS组间差异无统计学意义(P>0.05);偏最小二乘法分析显示X-ALD和ZS组与健康对照组能够完全分离,C26的变量投影重要度值最大。结论:串联质谱法检测VLCAC和LPC可作为过氧化物酶体病筛查的方法,其中C26或可作为诊断敏感指标。 展开更多
关键词 过氧化物酶体病 筛查 串联质谱法 极长链酰基肉碱 溶血磷脂酰胆碱
在线阅读 下载PDF
过氧化物酶体生物发生缺陷病1B型疾病1例报告 被引量:1
2
作者 兰莉 谈倩倩 +5 位作者 王春晖 王玉娟 罗丹 赵宏芳 王佳 尹凡 《临床儿科杂志》 CAS CSCD 北大核心 2019年第9期685-687,703,共4页
目的探讨peroxin 1(PEX1)复合杂合突变致过氧化物酶体生物发生缺陷病(PBD)的临床及基因特征。方法回顾分析1例PBD患儿的临床资料,并复习相关文献。结果患儿,男,4岁6个月,智力发育迟缓,无其他明显异常。基因检测发现患儿PBD相关PEX1基因... 目的探讨peroxin 1(PEX1)复合杂合突变致过氧化物酶体生物发生缺陷病(PBD)的临床及基因特征。方法回顾分析1例PBD患儿的临床资料,并复习相关文献。结果患儿,男,4岁6个月,智力发育迟缓,无其他明显异常。基因检测发现患儿PBD相关PEX1基因存在2个尚未报道的杂合突变,c.539A>C(p.Lys180Thr)和c.27042708delTTTAT(p.Phe902fs),符合常染色体隐性遗传模式。确诊为PBD1B型。结论 PBD患者临床表型多样,其严重程度与PEX1基因的突变类型有关,基因检测可确诊。 展开更多
关键词 过氧化物生物发生缺陷 PEX1基因 基因突变
在线阅读 下载PDF
过氧化物酶体生物发生研究进展 被引量:7
3
作者 孙艳 孙雪培 +1 位作者 姜玲玲 石芸 《生物学杂志》 CAS CSCD 2015年第2期83-86,共4页
过氧化物酶体是存在于真核细胞中的一种亚细胞器,主要功能是参与脂肪酸等脂质的代谢过程和氧化应激的调节。近年来研究发现,多种疾病都与过氧化物酶体的生物发生异常有关。过氧化物酶体的生物发生指过氧化物酶体的形成过程,包括从头合... 过氧化物酶体是存在于真核细胞中的一种亚细胞器,主要功能是参与脂肪酸等脂质的代谢过程和氧化应激的调节。近年来研究发现,多种疾病都与过氧化物酶体的生物发生异常有关。过氧化物酶体的生物发生指过氧化物酶体的形成过程,包括从头合成和分裂增殖两条途径。两条途径中,参与过氧化物酶体生物发生的蛋白质,即peroxin(PEX)的基因发生突变,会导致过氧化物酶体生成障碍,引起疾病的发生。因此,就过氧化物酶体生物发生的研究进展进行综述,有助于为相关疾病的诊断和治疗提供参考和依据。 展开更多
关键词 过氧化物 PEROXIN 过氧化物生物发生缺陷
在线阅读 下载PDF
Targeting PPARαfor The Treatment of Cardiovascular Diseases
4
作者 ZHANG Tong-Tong ZHANG Hao-Zhuo +4 位作者 HE Li LIU Jia-Wei WU Jia-Zhen SU Wen-Hua DAN Ju-Hua 《生物化学与生物物理进展》 北大核心 2025年第9期2295-2313,共19页
Cardiovascular disease(CVD)remains one of the leading causes of mortality among adults globally,with continuously rising morbidity and mortality rates.Metabolic disorders are closely linked to various cardiovascular d... Cardiovascular disease(CVD)remains one of the leading causes of mortality among adults globally,with continuously rising morbidity and mortality rates.Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression,involving multifaceted mechanisms such as altered substrate utilization,mitochondrial structural and functional dysfunction,and impaired ATP synthesis and transport.In recent years,the potential role of peroxisome proliferator-activated receptors(PPARs)in cardiovascular diseases has garnered significant attention,particularly peroxisome proliferator-activated receptor alpha(PPARα),which is recognized as a highly promising therapeutic target for CVD.PPARαregulates cardiovascular physiological and pathological processes through fatty acid metabolism.As a ligand-activated receptor within the nuclear hormone receptor family,PPARαis highly expressed in multiple organs,including skeletal muscle,liver,intestine,kidney,and heart,where it governs the metabolism of diverse substrates.Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions,PPARαexerts its cardioprotective effects through multiple pathways:modulating lipid metabolism,participating in cardiac energy metabolism,enhancing insulin sensitivity,suppressing inflammatory responses,improving vascular endothelial function,and inhibiting smooth muscle cell proliferation and migration.These mechanisms collectively reduce the risk of cardiovascular disease development.Thus,PPARαplays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation,anti-inflammatory actions,and anti-apoptotic effects.PPARαis activated by binding to natural or synthetic lipophilic ligands,including endogenous fatty acids and their derivatives(e.g.,linoleic acid,oleic acid,and arachidonic acid)as well as synthetic peroxisome proliferators.Upon ligand binding,PPARαactivates the nuclear receptor retinoid X receptor(RXR),forming a PPARα-RXR heterodimer.This heterodimer,in conjunction with coactivators,undergoes further activation and subsequently binds to peroxisome proliferator response elements(PPREs),thereby regulating the transcription of target genes critical for lipid and glucose homeostasis.Key genes include fatty acid translocase(FAT/CD36),diacylglycerol acyltransferase(DGAT),carnitine palmitoyltransferase I(CPT1),and glucose transporter(GLUT),which are primarily involved in fatty acid uptake,storage,oxidation,and glucose utilization processes.Advancing research on PPARαas a therapeutic target for cardiovascular diseases has underscored its growing clinical significance.Currently,PPARαactivators/agonists,such as fibrates(e.g.,fenofibrate and bezafibrate)and thiazolidinediones,have been extensively studied in clinical trials for CVD prevention.Traditional PPARαagonists,including fenofibrate and bezafibrate,are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol(HDL-C)levels.These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα,and their cardioprotective effects have been validated in numerous clinical studies.Recent research highlights that fibrates improve insulin resistance,regulate lipid metabolism,correct energy metabolism imbalances,and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells,thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure.Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications,activating PPARαmay serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy,atherosclerosis,ischemic cardiomyopathy,myocardial infarction,diabetic cardiomyopathy,and heart failure.This review comprehensively examines the regulatory roles of PPARαin cardiovascular diseases and evaluates its clinical application value,aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment. 展开更多
关键词 cardiovascular disease PPARΑ AGONISTS energy metabolism
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部