Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorpti...Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained.Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.展开更多
In order to simplify the boundary conditions of pavement temperature field,the "Environment-Surface" system which considered the natural environment and pavement surface was established.Based on this system,...In order to simplify the boundary conditions of pavement temperature field,the "Environment-Surface" system which considered the natural environment and pavement surface was established.Based on this system,the partial differential equations of the one-dimensional heat conduction in the pavement were established on the basis of the heat transfer theory.Furthermore,the function forms of the initial and boundary conditions of the equations were created through the field experiments.The general solution of the pavement one-dimensional heat conduction partial differential equations was acquired by using Green's function,and the explicit expression of pavement temperature field under specific constraint conditions was derived.For the purpose of analysis,the pavement temperatures in different seasons were calculated using the explicit expression of pavement temperature field,and the calculation accuracy was analyzed through the comparison between measured and calculated values.Then,the relationship between fitting accuracy and calculation accuracy of pavement temperatures was analyzed.The analysis results show that: the usage of "Environment-Surface" system simplifies the calculation of pavement temperature field; the relative error between calculated and measured values is generally less than 7% and is seldom influenced by seasons; there is a positive correlation between the calculation accuracy and the fitting accuracy of pavement surface temperature; high fitting accuracy would result in less error of pavement temperature prediction.展开更多
文摘Combined effects of Soret(thermal-diffusion) and Dufour(diffusion-thermo) in MHD stagnation point flow by a permeable stretching cylinder were studied. Analysis was examined in the presence of heat generation/absorption and chemical reaction. The laws of conservation of mass, momentum, energy and concentration are found to lead to the mathematical development of the problem. Suitable transformations were used to convert the nonlinear partial differential equations into the ordinary differential equations. The series solutions of boundary layer equations through momentum, energy and concentration equations were obtained.Convergence of the developed series solutions was discussed via plots and numerical values. The behaviors of different physical parameters on the velocity components, temperature and concentration were obtained. Numerical values of Nusselt number, skin friction and Sherwood number with different parameters were computed and analyzed. It is found that Dufour and Soret numbers result in the enhancement of temperature and concentration distributions, respectively.
基金Projects(2012zzts019,2012QNZT048)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(201306370121)supported by the State Scholarship Fund of China+3 种基金Project(JT20090898002)supported by Traffic Technology Fund of Hainan Province,ChinaProject(2012M521563)supported by the China Postdoctoral Science FoundationProject(51248006)supported by The National Natural Science Foundation of ChinaProject(511114)supported by the Natural Science Foundation of Hainan Province,China
文摘In order to simplify the boundary conditions of pavement temperature field,the "Environment-Surface" system which considered the natural environment and pavement surface was established.Based on this system,the partial differential equations of the one-dimensional heat conduction in the pavement were established on the basis of the heat transfer theory.Furthermore,the function forms of the initial and boundary conditions of the equations were created through the field experiments.The general solution of the pavement one-dimensional heat conduction partial differential equations was acquired by using Green's function,and the explicit expression of pavement temperature field under specific constraint conditions was derived.For the purpose of analysis,the pavement temperatures in different seasons were calculated using the explicit expression of pavement temperature field,and the calculation accuracy was analyzed through the comparison between measured and calculated values.Then,the relationship between fitting accuracy and calculation accuracy of pavement temperatures was analyzed.The analysis results show that: the usage of "Environment-Surface" system simplifies the calculation of pavement temperature field; the relative error between calculated and measured values is generally less than 7% and is seldom influenced by seasons; there is a positive correlation between the calculation accuracy and the fitting accuracy of pavement surface temperature; high fitting accuracy would result in less error of pavement temperature prediction.