An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for t...An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for the alignment in the moving state is established and the observability of the system is analyzed. The results show that the SINS can successfully achieve the precision alignment in 10 min when the vehicle is moving toward the prearranged place after its staying for several seconds to perform the coarse alignment. The precision of alignment can also be improved in the moving state compared with that in the static state.展开更多
With the advancements in wireless sensor networks, Internet of Vehicles(IOV) has shown great potential in aiding to ease traffic congestion. In IOV, vehicles can easily exchange information with other vehicles and inf...With the advancements in wireless sensor networks, Internet of Vehicles(IOV) has shown great potential in aiding to ease traffic congestion. In IOV, vehicles can easily exchange information with other vehicles and infrastructures, thus, the development of IOV will greatly improve vehicles safety, promote green information consumption and have a profound impact on many industries. The purpose of this paper is to promote the innovation and development of IOV. Firstly, this paper presents general requirements of IOV such as guidelines, basic principles, and the goal of development. Secondly, we analyze critical applications, crucial support, and business model to promote the industrial development of IOV. Finally, this paper proposes some safeguard measures to further promote the development of IOV.展开更多
Existing research on data collection using wireless mobile vehicle network emphasizes the reliable delivery of information.However,other performance requirements such as life cycle of nodes,stability and security are ...Existing research on data collection using wireless mobile vehicle network emphasizes the reliable delivery of information.However,other performance requirements such as life cycle of nodes,stability and security are not set as primary design objectives.This makes data collection ability of vehicular nodes in real application environment inferior.By considering the features of nodes in wireless IoV,such as large scales of deployment,volatility and low time delay,an efficient data collection algorithm is proposed for mobile vehicle network environment.An adaptive sensing model is designed to establish vehicular data collection protocol.The protocol adopts group management in model communication.The vehicular sensing node in group can adjust network sensing chain according to sensing distance threshold with surrounding nodes.It will dynamically choose a combination of network sensing chains on basis of remaining energy and location characteristics of surrounding nodes.In addition,secure data collection between sensing nodes is undertaken as well.The simulation and experiments show that the vehicular node can realize secure and real-time data collection.Moreover,the proposed algorithm is superior in vehicular network life cycle,power consumption and reliability of data collection by comparing to other algorithms.展开更多
The most complicated component in cavitating flow and pressure distribution is the flow in the cavity closure line. The cavitating flow and pressure distribution provide critical aspects of flow field details in the r...The most complicated component in cavitating flow and pressure distribution is the flow in the cavity closure line. The cavitating flow and pressure distribution provide critical aspects of flow field details in the region. The integral of pressure results of the hydrodynamic forces, indicate domination in the design of a supercavitating vehicle. An experiment was performed in a water tunnel to investigate the pressure characteristics of the cavity closure region. Ventilation methods were employed to generate artificial cavity, and the ventilation rate was adjusted accordingly to obtain the desired cavity length. An array of pressure transducers was laid down the cavity closure line to capture pressure distribution in this region. The experimental results show that there is a pressure peak in the cavity closure region, and the rise rate of pressure in space tends to be higher in the upwind side when the flow is non-axisymmetric. The transient pressure variations during the cavity formation procedure were also present. The method of measurement in this paper can be referenced by engineers. The result helps to study the flow pattern of cavity closure region, and it can also be used to analyze the formation of supercavitating vehicle hydrodynamics.展开更多
文摘An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for the alignment in the moving state is established and the observability of the system is analyzed. The results show that the SINS can successfully achieve the precision alignment in 10 min when the vehicle is moving toward the prearranged place after its staying for several seconds to perform the coarse alignment. The precision of alignment can also be improved in the moving state compared with that in the static state.
文摘With the advancements in wireless sensor networks, Internet of Vehicles(IOV) has shown great potential in aiding to ease traffic congestion. In IOV, vehicles can easily exchange information with other vehicles and infrastructures, thus, the development of IOV will greatly improve vehicles safety, promote green information consumption and have a profound impact on many industries. The purpose of this paper is to promote the innovation and development of IOV. Firstly, this paper presents general requirements of IOV such as guidelines, basic principles, and the goal of development. Secondly, we analyze critical applications, crucial support, and business model to promote the industrial development of IOV. Finally, this paper proposes some safeguard measures to further promote the development of IOV.
基金supported by the National Nature Science Foundation of China(Grant61572188)A Project Supported by Scientif ic Research Fund of Hunan Provincial Education Department(14A047)+4 种基金the Natural Science Foundation of Fujian Province(Grant no.2014J05079)the Young and Middle-Aged Teachers Education Scientific Research Project of Fujian province(Grant nos.JA13248JA14254 and JA15368)the special scientific research funding for colleges and universities from Fujian Provincial Education Department(Grant no.JK2013043)the Research Project supported by Xiamen University of Technology(YKJ15019R)
文摘Existing research on data collection using wireless mobile vehicle network emphasizes the reliable delivery of information.However,other performance requirements such as life cycle of nodes,stability and security are not set as primary design objectives.This makes data collection ability of vehicular nodes in real application environment inferior.By considering the features of nodes in wireless IoV,such as large scales of deployment,volatility and low time delay,an efficient data collection algorithm is proposed for mobile vehicle network environment.An adaptive sensing model is designed to establish vehicular data collection protocol.The protocol adopts group management in model communication.The vehicular sensing node in group can adjust network sensing chain according to sensing distance threshold with surrounding nodes.It will dynamically choose a combination of network sensing chains on basis of remaining energy and location characteristics of surrounding nodes.In addition,secure data collection between sensing nodes is undertaken as well.The simulation and experiments show that the vehicular node can realize secure and real-time data collection.Moreover,the proposed algorithm is superior in vehicular network life cycle,power consumption and reliability of data collection by comparing to other algorithms.
基金Foundation item: Supported by the National Natural Science Foundation of China (11172241), and Northwestern Polytechnical University Foundation for Fundamental Research. (NPU-FFR- 1015)
文摘The most complicated component in cavitating flow and pressure distribution is the flow in the cavity closure line. The cavitating flow and pressure distribution provide critical aspects of flow field details in the region. The integral of pressure results of the hydrodynamic forces, indicate domination in the design of a supercavitating vehicle. An experiment was performed in a water tunnel to investigate the pressure characteristics of the cavity closure region. Ventilation methods were employed to generate artificial cavity, and the ventilation rate was adjusted accordingly to obtain the desired cavity length. An array of pressure transducers was laid down the cavity closure line to capture pressure distribution in this region. The experimental results show that there is a pressure peak in the cavity closure region, and the rise rate of pressure in space tends to be higher in the upwind side when the flow is non-axisymmetric. The transient pressure variations during the cavity formation procedure were also present. The method of measurement in this paper can be referenced by engineers. The result helps to study the flow pattern of cavity closure region, and it can also be used to analyze the formation of supercavitating vehicle hydrodynamics.