期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
基于超参数优化和误差修正的STAGN超短期风电功率预测 被引量:3
1
作者 潘超 王超 +1 位作者 孙惠 孟涛 《电力系统保护与控制》 北大核心 2025年第8期117-129,共13页
针对风电功率预测模型的数据关联性与误差修正适应性问题,提出基于超参数优化和误差修正单元切换的超短期风电功率预测方法。首先,构建时空注意力门控网络预测模型,利用改进开普勒算法进行超参数优化。然后,考虑风电场数据与预测误差之... 针对风电功率预测模型的数据关联性与误差修正适应性问题,提出基于超参数优化和误差修正单元切换的超短期风电功率预测方法。首先,构建时空注意力门控网络预测模型,利用改进开普勒算法进行超参数优化。然后,考虑风电场数据与预测误差之间的非线性关联,构建误差修正自适应单元。同时挖掘风速时序变化特征,构建深度学习单元。在此基础上,提出基于风速矩阵梯度的误差修正单元切换策略。最后,将模型应用于实际风场的功率预测并与其他模型对比分析。结果表明,所提方法在预测精度上优于其他方法,且在风速复杂多变的风场仍具有较高预测精度,验证了所提方法的准确性和适用性。 展开更多
关键词 超短期风电功率预测 改进开普勒算法 误差修正 速矩阵梯度
在线阅读 下载PDF
考虑时序特征缺失值动态插补的超短期风电功率预测
2
作者 李丹 唐建 +2 位作者 缪书唯 黄烽云 罗娇娇 《中国电机工程学报》 北大核心 2025年第17期6790-6803,I0015,共15页
风电功率预测使用的数据集可能存在不同程度的数据缺失现象,由于缺失值处理往往独立于预测模型训练之外,无法充分利用真实数据的时序相关特点提高预测效果,对此提出考虑时序特征缺失值动态插补的超短期风电功率预测方法。针对时序数据... 风电功率预测使用的数据集可能存在不同程度的数据缺失现象,由于缺失值处理往往独立于预测模型训练之外,无法充分利用真实数据的时序相关特点提高预测效果,对此提出考虑时序特征缺失值动态插补的超短期风电功率预测方法。针对时序数据存在缺失值的问题,设计嵌入时滞衰减插补策略的门控循环单元动态捕捉输入特征时间序列中缺失值前后观测值间的不规则时滞关系,并通过带掩码的自相关分析,确定输入特征的最佳时窗长度和时滞衰减率函数的初始参数;基于门控循环单元提取的时序信息,进一步构建序列到序列的预测结构,协调历史和预测时刻输入特征维度不一致的问题,输出未来15 min~4 h的风电功率预测序列。实验结果表明,所提方法在风电数据含缺失值的情景下,与传统的缺失值处理和预测方法相比,具有更高的预测精度和更稳定的预测性能。 展开更多
关键词 超短期风电功率预测 时序特征缺失值 自相关分析 时滞衰减率函数 序列到序列模型
在线阅读 下载PDF
基于低风速功率修正和损失函数改进的超短期风电功率预测 被引量:11
3
作者 臧海祥 赵勇凯 +3 位作者 张越 程礼临 卫志农 秦雪妮 《电力系统自动化》 EI CSCD 北大核心 2024年第7期248-257,共10页
风电功率具有较强的波动性和随机性。为进一步提升风电功率的预测精度,提出一种基于低风速功率修正和损失函数改进的超短期风电功率预测模型。该模型采用卷积神经网络、自注意力机制和双向门控循环单元捕获风电功率序列的长期时序依赖... 风电功率具有较强的波动性和随机性。为进一步提升风电功率的预测精度,提出一种基于低风速功率修正和损失函数改进的超短期风电功率预测模型。该模型采用卷积神经网络、自注意力机制和双向门控循环单元捕获风电功率序列的长期时序依赖关系。为了解决低风速下待风状态神经网络难以精确拟合的问题,模型通过预测风速并结合当前时段的风电功率对低风速段的预测功率进行修正。针对参数训练的稳定性问题,模型通过改进预测策略和共享权重,引入一种多元非线性的损失函数来提取序列间的关联性。结果表明,所提模型在多项误差指标中均优于对比模型,能够有效提升超短期风电功率的预测效果。 展开更多
关键词 超短期风电功率预测 功率修正 损失函数改进 神经网络模型
在线阅读 下载PDF
基于TCN-Wpsformer混合模型的超短期风电功率预测 被引量:14
4
作者 徐钽 谢开贵 +3 位作者 王宇 胡博 邵常政 赵宇生 《电力自动化设备》 EI CSCD 北大核心 2024年第8期54-61,共8页
针对基于梯度下降的递归神经网络难以捕获时间跨度较长的风电功率长期依赖关系的问题,提出一种基于时间卷积网络(TCN)和窗口概率稀疏Transformer(Wpsformer)混合模型的超短期风电功率预测方法。将包含时间季节性特征的时间编码与包含原... 针对基于梯度下降的递归神经网络难以捕获时间跨度较长的风电功率长期依赖关系的问题,提出一种基于时间卷积网络(TCN)和窗口概率稀疏Transformer(Wpsformer)混合模型的超短期风电功率预测方法。将包含时间季节性特征的时间编码与包含原始数据位置信息的绝对位置编码进行拼接,引入TCN提取时间片段特征,将时间片段特征融入自注意力机制,以时间片段的相关性联系替代时间点的相关性联系。通过Wpsformer模型多步输出超短期风电功率预测值,与原始Transformer模型相比,Wpsformer模型使用窗口概率稀疏自注意力机制,在捕获长期依赖关系的同时筛选出重要程度相对较高的时间片段特征进行计算,提高了预测精度且降低了计算成本。曹店风电场的算例结果表明,所提模型在预测精度方面具有明显优势。消融实验证明了所提模型各模块的必要性。 展开更多
关键词 超短期风电功率预测 时间卷积网络 窗口概率稀疏Transformer 窗口概率稀疏自注意力机制
在线阅读 下载PDF
超短期风电功率预测误差数值特性分层分析方法 被引量:42
5
作者 叶林 任成 +2 位作者 赵永宁 饶日晟 滕景竹 《中国电机工程学报》 EI CSCD 北大核心 2016年第3期692-700,共9页
风电功率预测误差特性分析可以为电力系统优化调度与稳定运行提供更加准确的参考。该文提出一种根据超短期风电功率预测误差概率密度特性对误差进行分层,再依据误差波动性和不同层误差幅值特性进行分类处理的预测误差数值特性分析方法... 风电功率预测误差特性分析可以为电力系统优化调度与稳定运行提供更加准确的参考。该文提出一种根据超短期风电功率预测误差概率密度特性对误差进行分层,再依据误差波动性和不同层误差幅值特性进行分类处理的预测误差数值特性分析方法。在概率密度特性提取部分,采用改进后的广义误差分布模型对预测误差概率密度分布进行拟合。该误差分析方法结合了误差模型预测和误差概率密度拟合两种方法的优点,可以更为准确地对超短期风电功率预测误差进行分析和补偿。算例分析结果表明,改进广义误差分布模型的拟合效果优于正态分布、柯西分布和拉普拉斯分布这些常用模型,尤其在尾部特性拟合方面效果更为明显,所提出的误差分层分析方法可以有效减小风电功率预测误差。 展开更多
关键词 超短期风电功率预测 广义误差分布 分层分析 误差补偿
在线阅读 下载PDF
基于VMD-SE-IPSO-BNN的超短期风电功率预测 被引量:9
6
作者 殷豪 董朕 孟安波 《电测与仪表》 北大核心 2018年第2期45-51,共7页
准确预测风电功率对风电规模化并网至关重要。为了更精确的对风电功率进行预测,提出一种基于可变模式分解(Variational Mode Decomposition,VMD)-样本熵(Sample Entropy,SE)和改进粒子群算法(Improved Particle Swarm Optimization,IPSO... 准确预测风电功率对风电规模化并网至关重要。为了更精确的对风电功率进行预测,提出一种基于可变模式分解(Variational Mode Decomposition,VMD)-样本熵(Sample Entropy,SE)和改进粒子群算法(Improved Particle Swarm Optimization,IPSO)优化贝叶斯神经网络(Bayesian Neural Network,BNN)的超短期风电功率组合预测模型。首先采用VMD-SE将原始风电功率时间序列分解为一系列不同带宽的模式分量以降低其非线性,然后对全部分量分别建立贝叶斯神经网络模型进行预测,并采用IPSO对神经网络的权值和阈值进行寻优,以求获得最佳的预测效果。实验结果表明,基于VMD-SE的预测模型较采用其他常规分解方式时预测精度明显提高,所提组合预测模型具有较高的预测精度。 展开更多
关键词 超短期风电功率预测 可变模式分解 样本熵 改进粒子群算法 贝叶斯神经网络 预测精度
在线阅读 下载PDF
基于CEEMDAN-PE-WPD和多目标优化的超短期风电功率预测方法 被引量:14
7
作者 常雨芳 杨子潇 +2 位作者 潘风 唐杨 黄文聪 《电网技术》 EI CSCD 北大核心 2023年第12期5015-5025,共11页
为了提高风电功率预测的精度,提出了一种基于总体平均经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)、排列熵(permutation entropy,PE)、小波包分解(wavelet packet decomposition,WPD)... 为了提高风电功率预测的精度,提出了一种基于总体平均经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)、排列熵(permutation entropy,PE)、小波包分解(wavelet packet decomposition,WPD)和多目标优化的超短期风电功率预测方法。首先,利用CEEMDAN、PE和WPD构成的信号处理方法降低原始风电信号的随机性和波动性;然后,将分解后的子分量输入到长短期记忆(long short-term memory,LSTM)神经网络,并且利用精英T分布麻雀优化算法(elite t-distribution sparrow optimization algorithm,ETSSA)优化LSTM的隐藏层单元数,提升LSTM网络的预测性能;最后,建立多目标优化损失函数,将准确率、稳定度和合格率3个优化目标同时加入到损失函数中,综合提升模型的预测性能。对内蒙古某地区风力发电场的实测数据进行实验分析结果表明,与其他经典预测方法相比,所提方法提升风电功率预测性能有显著效果,并且在不同季节风况下预测效果良好。 展开更多
关键词 超短期风电功率预测 总体平均经验模态分解 排列熵 小波包分解 短期记忆神经 精英T分布麻雀优化算法 多目标优化
在线阅读 下载PDF
基于动态集成LSSVR的超短期风电功率预测 被引量:3
8
作者 刘荣胜 彭敏放 +2 位作者 张海燕 万勋 沈美娥 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第4期79-86,共8页
针对最小二乘支持向量回归(Least Square Support Vector Regression,LSSVR)建模风电功率时变特性的局限性,提出了一种基于动态集成LSSVR的超短期风电功率预测模型.首先利用风电场监测控制与数据采集(Supervisory Control And Data Acqu... 针对最小二乘支持向量回归(Least Square Support Vector Regression,LSSVR)建模风电功率时变特性的局限性,提出了一种基于动态集成LSSVR的超短期风电功率预测模型.首先利用风电场监测控制与数据采集(Supervisory Control And Data Acquisition,SCADA)与数值天气预报(Numerical Weather Prediction,NWP)系统的历史数据建立离线单体LSSVR模型库,然后根据预测时段与训练时段NWP序列的相似度从单体LSSVR模型库中动态选择候选集成成员,再后综合考虑正确性与多样性确定集成成员.最后由预测时段与训练时段NWP序列间的相似度分配集成LSSVR成员的权重.通过对湖南省某风电场输出功率进行预测,验证了动态集成LSSVR预测模型的有效性,与持续法、自回归求和移动平均法、单体LSSVR模型、常权重LSSVR组合模型及BPNN动态集成模型相比,动态集成LSSVR模型具有更高的精度,在天气非平稳变化阶段更加明显. 展开更多
关键词 超短期风电功率预测 最小二乘支持向量回归 动态集成 动态时间弯曲距离 数值天气预报
在线阅读 下载PDF
基于相似曲线簇和GBRT方法的超短期风电功率预测 被引量:6
9
作者 张颖超 黄飞 +2 位作者 邓华 支兴亮 李慧玲 《华北电力大学学报(自然科学版)》 CAS 北大核心 2018年第6期15-20,共6页
为了减少训练数据的冗余信息,提高风电功率预测的精度,提出了基于相似曲线簇和GBRT方法的超短期风电功率预测模型。首先对历史风速序列进行相似曲线簇的提取,采用相似离度作为相似性判据,对大量历史风速序列与测试集风速序列进行相似性... 为了减少训练数据的冗余信息,提高风电功率预测的精度,提出了基于相似曲线簇和GBRT方法的超短期风电功率预测模型。首先对历史风速序列进行相似曲线簇的提取,采用相似离度作为相似性判据,对大量历史风速序列与测试集风速序列进行相似性的判断,继而找出相似性好的风速曲线簇以及曲线簇中每个风速点对应的功率,并将其作为最终的训练样本,然后采用梯度提升回归树(GBRT)模型进行风电功率的预测。用上海某风场的数据进行对比试验,结果表明,该方法能够明显提高超短期风电功率预测的精度,具有实际意义。 展开更多
关键词 超短期风电功率预测 相似曲线簇 相似离度 GBRT
在线阅读 下载PDF
基于OVMD-SSA-DELM-GM模型的超短期风电功率预测方法 被引量:49
10
作者 曾亮 雷舒敏 +1 位作者 王珊珊 常雨芳 《电网技术》 EI CSCD 北大核心 2021年第12期4701-4710,共10页
为了提高风电功率的预测精度,提出了一种基于最优变分模态分解(optimal variational model decomposition,OVMD)、麻雀算法(sparrow search algorithm,SSA)、深度极限学习机(deep extreme learning machine,DELM)和灰色模型(grey model,... 为了提高风电功率的预测精度,提出了一种基于最优变分模态分解(optimal variational model decomposition,OVMD)、麻雀算法(sparrow search algorithm,SSA)、深度极限学习机(deep extreme learning machine,DELM)和灰色模型(grey model,GM)的超短期风电功率预测方法。该方法通过OVMD对原始风电功率时间序列进行自适应分解;然后针对各分量建立DELM预测模型并利用SSA算法进行参数寻优,并对各个分量的预测结果进行求和重构;利用GM对误差序列进行预测;最后将误差的预测值与原始风电功率的预测值叠加得到最终预测结果。对北方某风电场的风电功率数据进行仿真实验,结果表明,该方法预测效果明显优于传统方法,有效提高了超短期风电功率预测的精确性。 展开更多
关键词 超短期风电功率预测 最优变分模态分解 深度极限学习机 麻雀算法 灰色模型
在线阅读 下载PDF
基于小波与最小资源分配网络的超短期风电功率预测研究 被引量:22
11
作者 杨杰 霍志红 +3 位作者 何永生 郭苏 邱良 许昌 《电力系统保护与控制》 EI CSCD 北大核心 2018年第9期55-61,共7页
针对风电场实际风速和风电功率序列的波动性、间歇性等特点以及RBF神经网络结构一旦确定隐节点个数就不可变等缺陷,提出了基于小波分析和最小资源分配网络的超短期风电功率预测方法。首先将历史风速和风电功率序列进行小波去噪及多频分... 针对风电场实际风速和风电功率序列的波动性、间歇性等特点以及RBF神经网络结构一旦确定隐节点个数就不可变等缺陷,提出了基于小波分析和最小资源分配网络的超短期风电功率预测方法。首先将历史风速和风电功率序列进行小波去噪及多频分解,得到多组高频信号和一组低频信号。然后对各频信号分别建立神经网络预测模型对未来4 h风电功率进行超短期预测。最后将各预测结果通过小波重构得到最终的超短期预测功率。实验结果证明,该方法能有效提高预测精度。 展开更多
关键词 电场 神经网络 小波分析 最小资源分配网络 超短期风电功率预测
在线阅读 下载PDF
基于IDSCNN-AM-LSTM组合神经网络超短期风电功率预测方法 被引量:49
12
作者 李卓 叶林 +3 位作者 戴斌华 於益军 罗雅迪 宋旭日 《高电压技术》 EI CAS CSCD 北大核心 2022年第6期2117-2127,共11页
针对传统超短期风电功率预测方法难以应对海量强波动性数据,且对时间序列处理能力有限的问题,提出一种基于改进的深度可分离卷积神经网络(the improved depthwise separable convolution neural networks,IDSCNN)、注意力机制(attention... 针对传统超短期风电功率预测方法难以应对海量强波动性数据,且对时间序列处理能力有限的问题,提出一种基于改进的深度可分离卷积神经网络(the improved depthwise separable convolution neural networks,IDSCNN)、注意力机制(attention mechanism,AM)、长短期记忆神经网络(long short-term memory neural network,LSTM)的超短期风电功率组合预测方法。首先,基于IDSCNN设计能够匹配风电场群时空维度变换的可分离卷积核尺寸,对数值天气预报数据、实测功率数据进行一次时空特征提取,以获取气象–功率时空特征。然后,结合AM强化一次时空特征长时间序列中局部重要信息的贡献程度,筛选出与未来预测功率密切相关的二次时空特征,以作为LSTM预测模型的输入时间序列。最后,建立包含改进的深度可分离卷积层、注意力权重分配层、LSTM预测层的IDSCNN-AM-LSTM组合神经网络超短期风电功率预测模型。仿真结果表明:该方法能够利用深度学习在挖掘高维非线性特征时的优势,对多个风电场之间的时空相关性进行充分学习,而且在单步风场功率预测和多步集群功率预测上,与其他预测模型相比均具有较高的预测精度和较好的时序学习能力。 展开更多
关键词 超短期风电功率预测 深度可分离卷积 注意力机制 短期记忆神经网络 时间序列
在线阅读 下载PDF
大型风电场超短期风电功率预测 被引量:6
13
作者 廖志民 孙晔 张欢 《电网与清洁能源》 2013年第2期75-79,85,共6页
针对大规模风电场风电功率的非线性特性,采用最小二乘支持向量机(LS-SVM)的预测模型。由于LS-SVM的参数选择直接影响着模型的预测精度,于是采用一种基于量子粒子群优化方法来选择模型的超参数。为了弥补模型损失的鲁棒性,通过给每个样... 针对大规模风电场风电功率的非线性特性,采用最小二乘支持向量机(LS-SVM)的预测模型。由于LS-SVM的参数选择直接影响着模型的预测精度,于是采用一种基于量子粒子群优化方法来选择模型的超参数。为了弥补模型损失的鲁棒性,通过给每个样本误差不同的权系数,建立了具有良好泛化性能的WLS-SVM回归模型,从而进一步提高了模型预测的精度。本文提出一种基于量子粒子群优化(Quantumbehaved Particle Swarm Optimization,QPSO)参数选择的加权最小二乘支持向量机(Weighted Least Squares Support Vector Machine,WLS-SVM)的超短期风电功率预测模型。应用上述方法对内蒙古地区大型风电场进行了预测,结果证明了该方法的有效性。 展开更多
关键词 量子粒子群优化 最小二乘支持向量机 超短期风电功率预测 鲁棒性
在线阅读 下载PDF
基于CEEMDAN-IDOA-BiLSTM的超短期风电功率预测 被引量:13
14
作者 欧旭鹏 唐云 +2 位作者 张凯 任涛 王媛媛 《电网与清洁能源》 CSCD 北大核心 2023年第11期142-150,共9页
准确可靠的风电功率预测对电力系统调度、风电场的效益和电网的安全稳定运行具有重要意义。为了提高超短期风电功率预测的准确性,提出了一种基于自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adapt... 准确可靠的风电功率预测对电力系统调度、风电场的效益和电网的安全稳定运行具有重要意义。为了提高超短期风电功率预测的准确性,提出了一种基于自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和改进野狗优化算法(improved dog optimization algorithm,IDOA)优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的组合模型预测超短期风电功率方法。该方法先采用CEEMDAN分解方法将原始的数据分解来降低原始数据的复杂性和不稳定性,将分解后的所有序列进行偏自相关方法分析,选出重要性较大序列作为IDOA-BiLSTM模型的输入,最后通过IDOA-BiLSTM模型进行超短期风电功率预测。采用甘肃某风电场实测数据为数据集,进行训练模型和预测分析,结果表明所提出的超短期风电功率预测模型具有较高的预测精度,具备实际应用的可行性。 展开更多
关键词 超短期风电功率预测 CEEMDAN IDOA-BiLSTM 深度学习
在线阅读 下载PDF
基于EMD-SC和AGSA优化支持向量机的超短期风电功率组合预测 被引量:2
15
作者 江岳春 杨旭琼 +1 位作者 陈礼锋 贺飞 《工程设计学报》 CSCD 北大核心 2017年第2期187-195,共9页
风电功率存在较大的随机性、波动性和相关性,这会对风电并网带来极大的挑战。为提高超短期风电功率预测精度,提出一种基于经验模态分解(empirical mode decomposition,EMD)、谱聚类(spectral clustering,SC)和改进型引力搜索算法(amelio... 风电功率存在较大的随机性、波动性和相关性,这会对风电并网带来极大的挑战。为提高超短期风电功率预测精度,提出一种基于经验模态分解(empirical mode decomposition,EMD)、谱聚类(spectral clustering,SC)和改进型引力搜索算法(ameliorated gravitational search algorithm,AGSA)优化支持向量机(support vector machine,SVM)参数的超短期风电功率组合预测方法。首先通过经验模态分解对风电原始数据进行去噪处理,剔除不规则的数据;然后应用谱聚类对经验模态分解后的子序列进行聚类分析,再应用改进型引力搜索算法优化支持向量机模型对各个子序列进行预测;最后将各子序列的预测结果相加得到最终预测值。以某风电场的实际数据为算例,仿真研究表明,所提出的组合模型能够提高风电功率预测精度,且预测效果较好,同时也证明了所采用方法的合理性。该方法能够用于风电功率的精确预测。 展开更多
关键词 超短期风电功率预测 经验模态分解 谱聚类 改进型引力搜索算法 支持向量机
在线阅读 下载PDF
基于时间模式注意力机制的BiLSTM多风电机组超短期功率预测 被引量:61
16
作者 王渝红 史云翔 +3 位作者 周旭 曾琦 方飚 毕悦 《高电压技术》 EI CAS CSCD 北大核心 2022年第5期1884-1892,共9页
针对现有预测方法难以批量处理多风机间不同特征的问题,提出了基于时间模式注意力(temporal pattern attention,TPA)机制的双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络多风电机组超短期功率预测方法。首先,基于... 针对现有预测方法难以批量处理多风机间不同特征的问题,提出了基于时间模式注意力(temporal pattern attention,TPA)机制的双向长短时记忆(bidirectional long short-term memory,BiLSTM)网络多风电机组超短期功率预测方法。首先,基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)获得风机原始功率信号的不同模态分量,以降低神经网络预测难度。其次,基于TPA机制,从Bi LSTM网络得到的隐藏行向量中提取多风机之间的复杂联系,从而使得具有不同特征的模态可以从不同时间步选择相关信息,进而降低各模态的预测误差。最后,将TPA机制与传统注意力机制应用于分散分布的14台风机区域功率预测任务。研究结果表明:基于本方法的多风电机组超短期功率预测的标准均方根误差仅为0.0546,证明TPA机制能有效提高多风电机组的超短期功率预测精度。 展开更多
关键词 超短期风电功率预测 电机组 时间模式注意力机制 双向长短时记忆 集合经验模态分解
在线阅读 下载PDF
含超短期风功率预测增强处理的风储系统超前滚动优化控制策略 被引量:18
17
作者 李滨 邓有雄 陈碧云 《电网技术》 EI CSCD 北大核心 2021年第6期2280-2287,共8页
因风电固有的高不确定性与强随机性的特点,在电力市场中难以与传统机组相竞争,影响其大规模地接入电网。为提高风电跟踪计划出力能力与市场竞争力,首先结合电池储能系统,考虑风储系统运行约束,建立了以区域发电机组并网要求下惩罚电量... 因风电固有的高不确定性与强随机性的特点,在电力市场中难以与传统机组相竞争,影响其大规模地接入电网。为提高风电跟踪计划出力能力与市场竞争力,首先结合电池储能系统,考虑风储系统运行约束,建立了以区域发电机组并网要求下惩罚电量与电池吞吐量最小为目标的优化模型;其次利用卡尔曼滤波算法对超短期风电功率预测数据进行增强处理,提高预测功率的时间分辨率与预测精度;在此基础上,将预测增强处理与超前滚动优化结合,提出了一种含超短期风功率预测增强处理的风储系统超前滚动优化控制策略。仿真结果表明,所提优化控制策略可在满足传统机组并网要求下,提高风储系统市场竞争力与经济性。 展开更多
关键词 储联合系统 超短期风电功率预测 预测增强处理 滚动优化 控制策略
在线阅读 下载PDF
基于XGBoost扩展金融因子的风电功率预测方法 被引量:9
18
作者 王永生 关世杰 +3 位作者 刘利民 高静 许志伟 刘广文 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第5期1038-1049,共12页
现有风电功率预测模型的主要输入特征包括气象数据和功率数据,高精度气象数据获取困难、数据间潜在关系难以表示、预测模型收敛缓慢,提出基于极端梯度提升回归树算法(XGBoost)扩展金融因子的超短期风电功率预测新方法,以及基于风电时序... 现有风电功率预测模型的主要输入特征包括气象数据和功率数据,高精度气象数据获取困难、数据间潜在关系难以表示、预测模型收敛缓慢,提出基于极端梯度提升回归树算法(XGBoost)扩展金融因子的超短期风电功率预测新方法,以及基于风电时序数据衍生金融因子的预测模型.采用具有较高预测准确率与较快训练速度的XGBoost算法进行预测,使得预测模型快速收敛.在中国内蒙古某风电场的风电功率数据集与德国Tennet公司风电功率数据集上进行实验验证.实验结果表明,以R2score为例,所提方法与基准方法相比提升约14.71%.所提方法中的建模与预测合计时间不超过500 ms. 展开更多
关键词 力发电 超短期风电功率预测 梯度提升回归树 XGBoost 金融因子
在线阅读 下载PDF
采用功率预测信息的风电场有功优化控制方法 被引量:39
19
作者 汤奕 王琦 +1 位作者 陈宁 朱凌志 《中国电机工程学报》 EI CSCD 北大核心 2012年第34期1-7,共7页
风电场接受系统有功调度指令后需将调度需求分配到场内各风电机组。考虑到风电机组控制系统的频繁动作会直接影响其出力可靠性和机组寿命,提出一种新的风电场有功优化控制方法。该方法通过超短期风功率预测数据判断风机出力趋势以确定... 风电场接受系统有功调度指令后需将调度需求分配到场内各风电机组。考虑到风电机组控制系统的频繁动作会直接影响其出力可靠性和机组寿命,提出一种新的风电场有功优化控制方法。该方法通过超短期风功率预测数据判断风机出力趋势以确定风机出力加权系数,优化风电场内有功调度分配指令,减少机组控制系统动作次数,平滑风电机组出力波动。最后,应用实际数据将所提方法与现有方法进行了比较,验证了所提方法的合理性和先进性。 展开更多
关键词 电场 有功调度 超短期风电功率预测 优化调度算法
在线阅读 下载PDF
基于泊松噪声和优化极限学习机的多因素混合学习方法及应用
20
作者 蒋锋 路畅 王辉 《统计与决策》 北大核心 2025年第1期52-57,共6页
针对风电功率数据高波动性和间歇性的特点,文章提出了一种基于泊松噪声的互补集合经验模态分解(CEEMDPN)和改进的蛇优化算法(MSO)优化极限学习机的多因素混合学习方法。首先,利用CEEMDPN将风电功率序列分解为子序列;然后,引入曲线自适... 针对风电功率数据高波动性和间歇性的特点,文章提出了一种基于泊松噪声的互补集合经验模态分解(CEEMDPN)和改进的蛇优化算法(MSO)优化极限学习机的多因素混合学习方法。首先,利用CEEMDPN将风电功率序列分解为子序列;然后,引入曲线自适应调整参数改进蛇优化算法;最后,运用MSO优化的极限学习机(ELM)对每个子序列进行预测并集成。为了验证CEEMDPN-MSO-ELM模型的有效性,采用龙源电力集团的风电功率数据进行超短期预测,实证结果表明,CEEMDPN算法能够加强风电功率序列的主频率部分并提高分解精度,MSO算法能够很好地平衡算法的寻优速度与收敛精度,从而有效提升ELM模型的预测性能,所提模型的预测精度和稳健性均优于其他对比模型。 展开更多
关键词 超短期风电功率预测 互补集合经验模态分解 蛇优化算法 极限学习机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部