期刊文献+
共找到76篇文章
< 1 2 4 >
每页显示 20 50 100
贝叶斯规整化神经网络模型预测化合物分子的血脑屏障通透性
1
作者 戴康 王晓红 《华中师范大学学报(自然科学版)》 CAS CSCD 2007年第2期226-228,240,共4页
通过分子结构预测血脑屏障通透性是一个颇具挑战性的课题.建立了一个预测化合物分子的血脑屏障分配系数(logBB)的QSAR模型.该模型由表示分子大小、拓扑性质和脂水分配性质的QSAR参数组成.模型被用来预测52个化合物的血脑屏障分配系数,... 通过分子结构预测血脑屏障通透性是一个颇具挑战性的课题.建立了一个预测化合物分子的血脑屏障分配系数(logBB)的QSAR模型.该模型由表示分子大小、拓扑性质和脂水分配性质的QSAR参数组成.模型被用来预测52个化合物的血脑屏障分配系数,并通过测试集(从52个化合物种选取10个)进行验证,预测值-实验值的相关系数平方(R2)为0.974,均方差(MSE)为0.0172.验证结果显示该模型大大优于传统使用的多元线性回归模型.因此,该模型可以用于预测药物分子和类似药物分子的血脑屏障通透性. 展开更多
关键词 血脑屏障 定量构效关系 贝叶斯规整化神经网络
在线阅读 下载PDF
贝叶斯规整化神经网络模型预测吲哚烷胺类化合物对5-HT_(1B/1D)受体亲和力 被引量:1
2
作者 温秋玲 杨博 戴康 《医药导报》 CAS 2010年第5期555-558,共4页
目的利用贝叶斯规整化神经网络模型研究45种吲哚烷胺对5羟-色胺(5-HT)1B/1D受体激动活性的定量构效关系。方法选取115种与结构相关的拓扑参数、几何参数和疏水性参数等,通过主成分分析法进行参数减元,建立基于10种主成分变量的活性预测... 目的利用贝叶斯规整化神经网络模型研究45种吲哚烷胺对5羟-色胺(5-HT)1B/1D受体激动活性的定量构效关系。方法选取115种与结构相关的拓扑参数、几何参数和疏水性参数等,通过主成分分析法进行参数减元,建立基于10种主成分变量的活性预测贝叶斯规整化神经网络模型,并利用去一法(LEAVE-ONE-OUT)对模型进行交叉验证。结果应用残差绝对值的平均值(MAE)进行筛选,得到隐含层神经元数目为10的模型为最佳模型。在该模型下,吲哚烷胺对5-HT1B受体和5-HT1D受体亲和力的实验值和预测值一元相关系数平方(R2)分别为0.990 5和0.988 7。结论模型显示吲哚烷胺5-HT受体激动作用与其结构有密切关系。贝叶斯规整化神经网络结合主成分分析方法有良好的预测能力,且稳定可靠,有望在5-HT1B/1D受体激动药新药设计中得到广泛应用。 展开更多
关键词 吲哚烷胺 5羟-色胺1B/1D受体 定量构效关系 贝叶斯规整化神经网络
在线阅读 下载PDF
贝叶斯正则化优化BP神经网络估算SOH 被引量:1
3
作者 朱聪聪 郭晟 +1 位作者 常海涛 路密 《电池》 北大核心 2025年第1期25-31,共7页
为提高锂离子电池健康状态(SOH)估算的精度,采用基于贝叶斯正则化算法优化的反向传播(BP)神经网络模型。该模型的核心是,引入先验分布约束BP网络权重参数,以减少过拟合风险;并引入后验分布评估参数的不确定性,提升模型对数据噪声的适应... 为提高锂离子电池健康状态(SOH)估算的精度,采用基于贝叶斯正则化算法优化的反向传播(BP)神经网络模型。该模型的核心是,引入先验分布约束BP网络权重参数,以减少过拟合风险;并引入后验分布评估参数的不确定性,提升模型对数据噪声的适应性。以充电全过程提取健康特征验证模型精度;以放电片段数据提取健康特征模拟实际工况。训练后的模型在充电全过程提取特征时的均方根误差(RMSE)和平均绝对误差(MAE)均小于1.65%,采用放电片段提取特征时的RMSE和MAE均小于3.85%,相较于未优化的BP神经网络,两种方式的估算误差分别降低18%和41%以上。 展开更多
关键词 锂离子电池 健康状态(SOH) 贝叶斯正则算法 反向传播(BP)神经网络 健康特征 先验分布 后验分布
在线阅读 下载PDF
基于神经网络的船舶辐射噪声预报方法 被引量:1
4
作者 黄欣 徐荣武 李瑞彪 《船舶力学》 北大核心 2025年第3期486-496,共11页
针对船舶机械设备众多、结构复杂、振动传递路径相互耦合的现状,本文提出基于误差反向传播(Back Propagation, BP)神经网络的船舶水下辐射噪声预报方法。分别构建基于梯度下降算法和贝叶斯正则化算法的BP神经网络,以振动数据为输入量、... 针对船舶机械设备众多、结构复杂、振动传递路径相互耦合的现状,本文提出基于误差反向传播(Back Propagation, BP)神经网络的船舶水下辐射噪声预报方法。分别构建基于梯度下降算法和贝叶斯正则化算法的BP神经网络,以振动数据为输入量、船体辐射噪声为输出量,将均方根误差(e RMSE)和平均绝对误差(e MAE)作为模型预测精度评价指标。结果表明,贝叶斯正则化BP神经网络的泛化性和鲁棒性优于梯度下降算法的BP神经网络,误差达到3 dB以内,在船舶辐射噪声预报领域具有较好的适用性。 展开更多
关键词 辐射噪声预报 BP神经网络 梯度下降算法 贝叶斯正则算法
在线阅读 下载PDF
聚类分析-神经网络-贝叶斯优化联合识别复合材料参数研究 被引量:1
5
作者 冯易鑫 彭辉 罗威 《力学学报》 EI CAS CSCD 北大核心 2024年第11期3333-3350,共18页
目前针对非均质复合材料参数的正逆向识别尚面临正向计算成本高和逆向识别泛用性低的难题.数据驱动的计算均匀化方法可以一方面利用数据科学的先进算法降低控制方程的变量数目,另一方面建立复合材料设计结构与等效参数的联系,从而显著... 目前针对非均质复合材料参数的正逆向识别尚面临正向计算成本高和逆向识别泛用性低的难题.数据驱动的计算均匀化方法可以一方面利用数据科学的先进算法降低控制方程的变量数目,另一方面建立复合材料设计结构与等效参数的联系,从而显著提升计算效率并挖掘参数间的内在关联.文章采用数据驱动的聚类分析方法(self-consistent clustering analysis,SCA),依据各网格点的应变集中张量进行聚类划分,并在聚类区域上求解离散的Lippmann-Schwinger方程,在极大程度降低计算自由度的同时,高效获取等效模量、热膨胀系数、热导率等参数.然而SCA法在处理大量不同结构工况时效率略显不足,进一步利用人工神经网络方法(artificial neural network,ANN)作为代理模型加速计算,实现不同工况下等效参数的快速预测.针对于逆向识别非均质材料和结构的反问题,则结合贝叶斯优化(Bayesian optimization)方法,在给定的等效参数下反向识别最优化的材料和几何结构,形成聚类分析-神经网络-贝叶斯优化的联合识别框架.以超导EAS股线和颗粒增强复合材料为例,进行联合识别框架与已有实验和数值结果的对比分析,继而从计算精度、求解效率、模型超参数选取、敏感度分析和反向验证等方面进行深入研究,探讨建立的聚类分析-神经网络-贝叶斯优化框架的优势和不足,以期为发展精度较高和适用范围较广的复合材料参数识别方法提供思路和参考. 展开更多
关键词 数据驱动计算力学 计算均匀 聚类分析 神经网络 贝叶斯
在线阅读 下载PDF
基于贝叶斯正则化BP神经网络的GPS高程转换 被引量:26
6
作者 宋雷 黄腾 +1 位作者 方剑 周旭华 《西南交通大学学报》 EI CSCD 北大核心 2008年第6期724-728,共5页
为了改善BP神经网络在GPS高程转换过程中过拟合的现象,提出了用贝叶斯正则化算法的BP神经网络转换GPS高程的新方法,并利用区域GPS/水准数据,将新方法和未采用正则化算法的BP神经网络进行GPS高程转换的比较.结果表明:在较大区域和高程异... 为了改善BP神经网络在GPS高程转换过程中过拟合的现象,提出了用贝叶斯正则化算法的BP神经网络转换GPS高程的新方法,并利用区域GPS/水准数据,将新方法和未采用正则化算法的BP神经网络进行GPS高程转换的比较.结果表明:在较大区域和高程异常呈不规则的情况下,新方法不仅可以有效提高GPS高程转换的精度,而且通过贝叶斯正则化算法可以改善网络结构,抑制过拟合现象.在约10 km的GPS基线尺度上,新方法可以得到精度达0.050 m的正常高. 展开更多
关键词 贝叶斯正则 BP神经网络 GPS高程转换 高程异常
在线阅读 下载PDF
基于L-M贝叶斯正则化方法的BP神经网络在潜艇声纳部位自噪声预报中的应用 被引量:14
7
作者 吴方良 石仲堃 +1 位作者 杨向晖 王建 《船舶力学》 EI 北大核心 2007年第1期136-142,共7页
基于L-M贝叶斯正则化方法使BP神经网络在推广能力、收敛速度和逼近精度上能够获得很大的提高。文中将BP神经网络和L-M贝叶斯正则化算法相结合用于潜艇声纳部位自噪声预报。分析了影响声纳部位自噪声的各种参数。利用潜艇声纳实测数据进... 基于L-M贝叶斯正则化方法使BP神经网络在推广能力、收敛速度和逼近精度上能够获得很大的提高。文中将BP神经网络和L-M贝叶斯正则化算法相结合用于潜艇声纳部位自噪声预报。分析了影响声纳部位自噪声的各种参数。利用潜艇声纳实测数据进行网络训练,训练好的神经网络可以对潜艇声纳部位自噪声进行精确预报。 展开更多
关键词 声纳自噪声 BP神经网络 贝叶斯正则
在线阅读 下载PDF
基于贝叶斯正则化神经网络的径流长期预报 被引量:13
8
作者 李红霞 许士国 范垂仁 《大连理工大学学报》 EI CAS CSCD 北大核心 2006年第z1期174-177,共4页
针对神经网络用于径流长期预报时,网络结构过于复杂而易出现过拟合的问题,采用主成分分析和贝叶斯正则化神经网络对预报模型进行改进.首先利用主成分分析对输入因子进行降维和优化,然后通过贝叶斯正则化对网络权值的限制来简化网络结构... 针对神经网络用于径流长期预报时,网络结构过于复杂而易出现过拟合的问题,采用主成分分析和贝叶斯正则化神经网络对预报模型进行改进.首先利用主成分分析对输入因子进行降维和优化,然后通过贝叶斯正则化对网络权值的限制来简化网络结构,从而有效地抑制过拟合.对嫩江流域江桥站年平均径流的仿真结果表明,贝叶斯正则化神经网络结合主成分分析的预报方法,可以显著地提高泛化能力和预报精度,而且网络收敛也比较稳定. 展开更多
关键词 径流长期预报 神经网络 性能 主成分分析 贝叶斯正则
在线阅读 下载PDF
基于贝叶斯神经网络遗传算法的锅炉燃烧优化 被引量:16
9
作者 方海泉 薛惠锋 +1 位作者 李宁 费晰 《系统仿真学报》 CAS CSCD 北大核心 2015年第8期1790-1795,共6页
神经网络与遗传算法相结合在锅炉燃烧优化问题上的应用非常广泛,但是传统的反向传播(BP,Back Propagation)神经网络泛化能力较弱,而贝叶斯正则化方法能有效提高神经网络的泛化能力。应用贝叶斯正则化BP神经网络与遗传算法相结合的方法,... 神经网络与遗传算法相结合在锅炉燃烧优化问题上的应用非常广泛,但是传统的反向传播(BP,Back Propagation)神经网络泛化能力较弱,而贝叶斯正则化方法能有效提高神经网络的泛化能力。应用贝叶斯正则化BP神经网络与遗传算法相结合的方法,对锅炉燃烧多目标优化问题进行研究。通过利用锅炉热态实验数据进行仿真,结果表明:贝叶斯神经网络模型可以很好地预测锅炉的热效率和NOx浓度,结合遗传算法可以对锅炉燃烧实现有效的多目标寻优,为电站的经济环保运行提供理论指导。 展开更多
关键词 锅炉 燃烧优 贝叶斯正则 神经网络 遗传算法 多目标优
在线阅读 下载PDF
基于贝叶斯正则化算法BP神经网络钒电池SOC预测 被引量:14
10
作者 杨春生 牛红涛 +1 位作者 隋良红 李明兴 《现代电子技术》 北大核心 2016年第8期158-161,共4页
电池荷电状态(SOC)用于表征电池的剩余电量,是全钒液流电池的一个重要参数。在此介绍常用的钒电池SOC预测方法,并对比其优缺点。基于电池SOC的非线性特征,提出采用BP神经网络预测钒电池的SOC,并采用L-M优化算法以及贝叶斯正则化算法对... 电池荷电状态(SOC)用于表征电池的剩余电量,是全钒液流电池的一个重要参数。在此介绍常用的钒电池SOC预测方法,并对比其优缺点。基于电池SOC的非线性特征,提出采用BP神经网络预测钒电池的SOC,并采用L-M优化算法以及贝叶斯正则化算法对网络进行优化。使用贝叶斯正则化改进的神经网络在对项目中全钒液流电池测试过程实时预测SOC。实验结果表明,采用贝叶斯正则化算法改进的神经网络能够提高SOC的实时预测精度,具有很好的实用前景。 展开更多
关键词 钒电池 荷电状态 BP神经网络 贝叶斯正则算法
在线阅读 下载PDF
基于贝叶斯正则化神经网络虚拟企业敏捷性评价 被引量:8
11
作者 缪宁 邓小珍 +1 位作者 刘文远 王宝文 《计算机工程与应用》 CSCD 北大核心 2008年第8期223-225,235,共4页
高敏捷性是虚拟企业适应不断变化的市场必备的素质,如何对它进行准确评价是虚拟企业运行中的重要问题,针对此问题先对虚拟企业及其盟员敏捷性之间的关系分析,然后提出在已知虚拟企业盟员敏捷性的基础上用贝叶斯正则化神经网络来计算虚... 高敏捷性是虚拟企业适应不断变化的市场必备的素质,如何对它进行准确评价是虚拟企业运行中的重要问题,针对此问题先对虚拟企业及其盟员敏捷性之间的关系分析,然后提出在已知虚拟企业盟员敏捷性的基础上用贝叶斯正则化神经网络来计算虚拟企业的敏捷性,最后通过仿真试验测试了该方法的可行性。实验结果证明与非正则化神经网络相比,贝叶斯正则化神经网络的泛化能力强,评价数据结果稳定。该方法可用于各种规模的虚拟企业评价。 展开更多
关键词 虚拟企业 盟员 敏捷性评价 神经网络 贝叶斯正则
在线阅读 下载PDF
基于主成分分析和贝叶斯正则化BP神经网络的GDP预测 被引量:17
12
作者 喻胜华 邓娟 《湖南大学学报(社会科学版)》 CSSCI 北大核心 2011年第6期42-45,共4页
选用财政收入、财政支出、消费品零售总额、实际利用外资、进出口总额以及全社会固定资产投资等对GDP有显著影响的6个因子,用1985~2008年中国的宏观经济数据建立了一个基于主成分分析和贝叶斯正则化BP神经网络的预测模型,并把它应用于... 选用财政收入、财政支出、消费品零售总额、实际利用外资、进出口总额以及全社会固定资产投资等对GDP有显著影响的6个因子,用1985~2008年中国的宏观经济数据建立了一个基于主成分分析和贝叶斯正则化BP神经网络的预测模型,并把它应用于我国GDP的预测。实证结果表明:通过主成分分析法和贝叶斯正则化方法对BP神经网络进行改进,可简化网络结构,增强泛化能力。与其它常用的预测方法相比,该方法数据输入简便,收敛速度快,拟合曲线光滑,且在预测精度上有明显的优势。 展开更多
关键词 主成分分析 贝叶斯正则 BP神经网络 预测
在线阅读 下载PDF
基于贝叶斯正则化BP神经网络的森林资源资产批量评估研究 被引量:5
13
作者 郑德祥 赖晓燕 廖晓丽 《福建林学院学报》 CSCD 北大核心 2013年第2期132-136,共5页
将BP神经网络与批量评估方法结合应用于森林资源资产评估中,通过对森林资源资产评估价值主要影响因子进行数据处理,确定不同龄组的BP网络结构,结合TM算法,通过贝叶斯正则化修正BP神经网络的训练性能函数,建立基于BP神经网络的不同龄组... 将BP神经网络与批量评估方法结合应用于森林资源资产评估中,通过对森林资源资产评估价值主要影响因子进行数据处理,确定不同龄组的BP网络结构,结合TM算法,通过贝叶斯正则化修正BP神经网络的训练性能函数,建立基于BP神经网络的不同龄组森林资源资产批量评估模型。结果表明,贝叶斯正则化BP神经网络能够实现批量预估森林资源资产价值,其评估结果精度可靠,泛化能力很好,可为森林资源资产评估提供一种新的思路与方法。 展开更多
关键词 森林资源 资产评估 贝叶斯正则 BP神经网络 批量评估
在线阅读 下载PDF
金属疲劳裂纹扩展速率的贝叶斯正则化BP神经网络预测 被引量:8
14
作者 罗广恩 崔维成 《船舶力学》 EI 北大核心 2012年第4期433-441,共9页
人工神经网络是进行预报裂纹扩展率的一个重要方法。文章针对不同金属的疲劳裂纹扩展速率分别建立贝叶斯正则化BP(Back Propagation)神经网络,将各材料在不同应力比R下的疲劳裂纹扩展速率试验数据分为两部分,一部分用来进行训练网络,另... 人工神经网络是进行预报裂纹扩展率的一个重要方法。文章针对不同金属的疲劳裂纹扩展速率分别建立贝叶斯正则化BP(Back Propagation)神经网络,将各材料在不同应力比R下的疲劳裂纹扩展速率试验数据分为两部分,一部分用来进行训练网络,另一部分用来测试训练好的网络,检验其泛化能力。将从文献中获取的4种不同金属材料的疲劳试验数据作为算例,来检验网络的性能。计算结果表明贝叶斯正则化BP神经网络不仅对训练样本有很好的拟合能力,而且对于未训练过的测试样本也有较好的预测能力,即有较强的泛化能力。同时,指出了建立网络时减少门槛值附近的试验样本点,可以提高网络的预测能力。研究结果表明,该方法可以方便地获得不同应力比R下的疲劳裂纹扩展速率,从而达到减少试验次数,充分利用已有数据的目的。并且可以进一步应用于其他金属的疲劳裂纹扩展速率的预报。 展开更多
关键词 疲劳裂纹扩展速率 BP神经网络 贝叶斯正则
在线阅读 下载PDF
基于贝叶斯正则化BP神经网络的日光温室温度预测模型 被引量:8
15
作者 王红君 史丽荣 +1 位作者 赵辉 岳有军 《湖北农业科学》 2015年第17期4300-4303,共4页
针对日光温室温度预测模型中输入因子间存在复杂的耦合关系以及输入因子过多而导致神经网络结构规模过大等问题,选用影响日光温室温度的环境因子组成数据样本,对数据样本进行主成分分析。提取出影响日光温室内温度的前3个成分作为BP神... 针对日光温室温度预测模型中输入因子间存在复杂的耦合关系以及输入因子过多而导致神经网络结构规模过大等问题,选用影响日光温室温度的环境因子组成数据样本,对数据样本进行主成分分析。提取出影响日光温室内温度的前3个成分作为BP神经网络模型的输入变量,采用贝叶斯正则化算法对BP神经网络进行改进。结果表明,该方法改进的BP神经网络模型得到简化,拟合曲线光滑,具有较好的泛化能力和网络推广能力。 展开更多
关键词 日光温室 温度 主成分分析 贝叶斯正则 BP神经网络
在线阅读 下载PDF
基于主成分分析和贝叶斯正则化方法的神经网络年最大洪峰流量预测模型探讨 被引量:2
16
作者 李红霞 许士国 范垂仁 《水文》 CSCD 北大核心 2006年第6期30-32,共3页
针时水文预测建模中输入因子过多而导致神经网络结构规模过大,泛化能力差的问题,利用主成分分析和贝叶斯正则化方法对神经网络进行改进,优化网络结构,从而提高泛化能力。以洮儿河流域镇西站年最大洪峰流量预测为例,研究结果表明,改进的... 针时水文预测建模中输入因子过多而导致神经网络结构规模过大,泛化能力差的问题,利用主成分分析和贝叶斯正则化方法对神经网络进行改进,优化网络结构,从而提高泛化能力。以洮儿河流域镇西站年最大洪峰流量预测为例,研究结果表明,改进的神经网络预测方法与传统的神经网络方法相比,泛化能力有显著提高,而且网络的收敛也比较稳定,实际预测中效果良好。 展开更多
关键词 神经网络 预测 能力 主成分分析 贝叶斯正则
在线阅读 下载PDF
基于贝叶斯正则化BP神经网络的股票指数预测 被引量:21
17
作者 杨海深 傅红卓 《科学技术与工程》 2009年第12期3306-3310,3318,共6页
提出了利用贝叶斯正则化BP神经网络对股票指数进行预测。通过对比实验表明,贝叶斯正则化的BP神经网络比相同条件下采用其他改进算法有较好的泛化能力,对股票指数预测有很好的效果。
关键词 神经网络 贝叶斯正则 上证指数
在线阅读 下载PDF
基于贝叶斯正则化BP神经网络的砂土地震液化研究 被引量:6
18
作者 林志红 项伟 《安全与环境工程》 CAS 2011年第2期23-27,共5页
砂土地震液化的影响因素具有高度的非线性关系,而神经网络在处理非线性问题上具有其独特的优越性。本文在探讨输入层模式的选择以及砂土液化影响因素的基础上,采用改进的贝叶斯正则化方法和"提前停止"算法建立了砂土地震液化... 砂土地震液化的影响因素具有高度的非线性关系,而神经网络在处理非线性问题上具有其独特的优越性。本文在探讨输入层模式的选择以及砂土液化影响因素的基础上,采用改进的贝叶斯正则化方法和"提前停止"算法建立了砂土地震液化预测模型,通过实例计算和模型评价,表明本模型的计算结果与规范法、改进的Seed简化法以及基于传统BP网络算法的计算结果相比具有更高的预测精度和较小的训练步长,并采用该模型对厦门集美大桥新环岛互通桥区进行砂土液化评价,证明了该模型具有较高的精度和泛化能力。 展开更多
关键词 贝叶斯正则 BP神经网络 Seed简 砂土地震液
在线阅读 下载PDF
Doherty功放的贝叶斯正则化神经网络逆向建模研究 被引量:5
19
作者 南敬昌 胡婷婷 +1 位作者 盛爽爽 高明明 《计算机工程与科学》 CSCD 北大核心 2018年第8期1496-1502,共7页
针对直接逆向建模方法精度低、稳定性差等缺点,提出了一种采用规则化函数为L^(1/2)范数的贝叶斯正则化神经网络逆向建模方法,L^(1/2)正则化使得网络结构具有稀疏性,能够缩小网络的规模、加快网络的训练速度,用贝叶斯正则化方法可以使网... 针对直接逆向建模方法精度低、稳定性差等缺点,提出了一种采用规则化函数为L^(1/2)范数的贝叶斯正则化神经网络逆向建模方法,L^(1/2)正则化使得网络结构具有稀疏性,能够缩小网络的规模、加快网络的训练速度,用贝叶斯正则化方法可以使网络的输出更加平滑,提高网络的稳定性和泛化能力。将此方法应用到Doherty功率放大器的设计中,在已知Doherty主功放效率、输出匹配端的S11和S21的情况下,分别仿真得出相对应的输出功率和f,可以简化设计过程。实验结果表明,此逆向模型求得的输出功率、与S11相对的f、与S21相对的f比直接逆向建模方法的均方误差分别减少了8.83%、9.30%和9.00%,运行时间分别减少了99.34%、99.40%和99.23%,解决了设计中的多解问题,可用于设计射频微波器件。 展开更多
关键词 神经网络 逆向建模 L1/2范数 贝叶斯正则 DOHERTY功率放大器
在线阅读 下载PDF
贝叶斯正则化的Elman神经网络电离层TEC预报模型 被引量:9
20
作者 汤俊 高鑫 《大地测量与地球动力学》 CSCD 北大核心 2020年第8期799-805,共7页
利用2017年中低纬电离层总电子含量、地磁活动指数、年积日等参数,首次建立基于贝叶斯正则化(Bayesian regularization)的Elman回归神经网络(BR-Elman)的电离层TEC预报模型。同时,根据地磁活动指数的变化特征,分别进行平静电离层和扰动... 利用2017年中低纬电离层总电子含量、地磁活动指数、年积日等参数,首次建立基于贝叶斯正则化(Bayesian regularization)的Elman回归神经网络(BR-Elman)的电离层TEC预报模型。同时,根据地磁活动指数的变化特征,分别进行平静电离层和扰动电离层预报建模。实验结果表明,该方法在平静期5 d预测值的均方根误差为1.19 TECu,残差为1.03 TECu,相关系数为0.93;在扰动期5 d预测值均方根误差为1.34 TECu,残差为1.01 TECu,相关系数为0.91。贝叶斯正则化的BP神经网络模型以及传统BP神经网络模型在平静期与扰动期5 d的预测上,均方根误差最小为1.87 TECu,残差最小为1.50 TECu,相关系数最优为0.87。通过对比分析,该模型较其他2个模型的预报效果有明显改善。 展开更多
关键词 电离层 总电子含量 贝叶斯正则 ELMAN神经网络 预报精度
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部