期刊文献+

基于贝叶斯神经网络遗传算法的锅炉燃烧优化 被引量:15

Boiler Combustion Optimization Based on Bayesian Neural Network and Genetic Algorithm
在线阅读 下载PDF
导出
摘要 神经网络与遗传算法相结合在锅炉燃烧优化问题上的应用非常广泛,但是传统的反向传播(BP,Back Propagation)神经网络泛化能力较弱,而贝叶斯正则化方法能有效提高神经网络的泛化能力。应用贝叶斯正则化BP神经网络与遗传算法相结合的方法,对锅炉燃烧多目标优化问题进行研究。通过利用锅炉热态实验数据进行仿真,结果表明:贝叶斯神经网络模型可以很好地预测锅炉的热效率和NOx浓度,结合遗传算法可以对锅炉燃烧实现有效的多目标寻优,为电站的经济环保运行提供理论指导。 Neural network and genetic algorithm have been extensively used in boiler combustion optimization problems. But the traditional Back Propagation neural network's generalization ability is poor. The Bayesian regularization can improve the neural network's generalization ability. A boiler combustion multi-objective optimization method combining Bayesian regularization BP neural network and genetic algorithm(Bayes NN-GA)was researched. A number of field test data from a boiler was used to simulate the Bayesian neural network model. The results show that the thermal efficiency and NOx emissions predicted by the Bayesian neural network model show good agreement with the measured, and the optimal results show that hybrid algorithm by combining Bayesian regularization BP neural network and genetic algorithm can be a good tool to solve the problem of multi-objective optimization of a coal-fired combustion, which provide a theory guidance for the boiler operation in an economic and environmental way.
出处 《系统仿真学报》 CAS CSCD 北大核心 2015年第8期1790-1795,共6页 Journal of System Simulation
关键词 锅炉 燃烧优化 贝叶斯正则化 神经网络 遗传算法 多目标优化 boiler combustion optimization Bayesian regularization neural network genetic algorithm multi-objective optimization
  • 相关文献

参考文献9

二级参考文献93

共引文献98

同被引文献176

引证文献15

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部