簇状规则间隔短回文重复序列(CRISPR and CRISPR-associated system,CRISPR-Cas系统)是在大多数细菌和古菌中发现的一种获得性免疫系统,由Cas酶和引导RNA(guide RNA,gRNA)组成,根据gRNA序列的特异性识别并剪切靶标DNA或RNA。近年来,得益...簇状规则间隔短回文重复序列(CRISPR and CRISPR-associated system,CRISPR-Cas系统)是在大多数细菌和古菌中发现的一种获得性免疫系统,由Cas酶和引导RNA(guide RNA,gRNA)组成,根据gRNA序列的特异性识别并剪切靶标DNA或RNA。近年来,得益于CRISPR-Cas系统优异的酶切活性,建立了多种生物传感技术(biosensor),光学信号传感策略简单、便携,广泛应用于科学研究和实际应用中。详细总结了近五年来基于CRISPR-Cas系统的各种光学传感策略的基本原理以及代表性成果和应用。同时,也对当前的应用前景和挑战进行展望。展开更多
The advancement of Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)gene editing technology has revolutionized the comprehension of human genome,propelling molecular and cellular biology research into ...The advancement of Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)gene editing technology has revolutionized the comprehension of human genome,propelling molecular and cellular biology research into unexplored realms and accelerating progress in life sciences and medicine.CRISPR-based gene screening,recognized for its efficiency and practicality,is widely utilized across diverse biological fields.Aging is a multifaceted process governed by a myriad of genetic and epigenetic factors.Unraveling the genes regulating aging holds promise for understanding this intricate phenomenon and devising strategies for its assessment and intervention.This review provides a comprehensive overview of the progress in CRISPR screening and its applications in aging research,while also offering insights into future directions.CRISPR-based genetic-manipulation tools are positioned as indispensable instruments for mitigating aging and managing age-related diseases.展开更多
文摘簇状规则间隔短回文重复序列(CRISPR and CRISPR-associated system,CRISPR-Cas系统)是在大多数细菌和古菌中发现的一种获得性免疫系统,由Cas酶和引导RNA(guide RNA,gRNA)组成,根据gRNA序列的特异性识别并剪切靶标DNA或RNA。近年来,得益于CRISPR-Cas系统优异的酶切活性,建立了多种生物传感技术(biosensor),光学信号传感策略简单、便携,广泛应用于科学研究和实际应用中。详细总结了近五年来基于CRISPR-Cas系统的各种光学传感策略的基本原理以及代表性成果和应用。同时,也对当前的应用前景和挑战进行展望。
文摘The advancement of Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)gene editing technology has revolutionized the comprehension of human genome,propelling molecular and cellular biology research into unexplored realms and accelerating progress in life sciences and medicine.CRISPR-based gene screening,recognized for its efficiency and practicality,is widely utilized across diverse biological fields.Aging is a multifaceted process governed by a myriad of genetic and epigenetic factors.Unraveling the genes regulating aging holds promise for understanding this intricate phenomenon and devising strategies for its assessment and intervention.This review provides a comprehensive overview of the progress in CRISPR screening and its applications in aging research,while also offering insights into future directions.CRISPR-based genetic-manipulation tools are positioned as indispensable instruments for mitigating aging and managing age-related diseases.