期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于侧输出融合卷积神经网络的电能质量扰动分类方法 被引量:14
1
作者 王继东 张迪 《电力自动化设备》 EI CSCD 北大核心 2021年第11期107-112,126,共7页
针对传统电能质量扰动分类方法分类准确率低、人工选择特征困难等缺点,提出了一种基于深度学习的侧输出融合卷积神经网络用于电能质量扰动信号分类。首先,对电能质量扰动信号进行预处理,使输入信号数据标准化,有利于提升所提方法的收敛... 针对传统电能质量扰动分类方法分类准确率低、人工选择特征困难等缺点,提出了一种基于深度学习的侧输出融合卷积神经网络用于电能质量扰动信号分类。首先,对电能质量扰动信号进行预处理,使输入信号数据标准化,有利于提升所提方法的收敛速度和精度。在传统卷积神经网络中引入侧输出融合结构,通过组合卷积低、中和高层的信息进行特征融合,以更好地对输入信号进行分类。针对实测数据不足和信号数据类型分布不均衡等问题,采用数据增强的方法对信号进行处理。仿真和实测数据验证表明,所提方法可以自动进行特征提取和优化,具有分类速度快、分类准确率高等优点。 展开更多
关键词 电能质量 扰动分类 侧输出融合卷积神经网络 深度学习 特征提取
在线阅读 下载PDF
基于融合卷积神经网络的多种类管道病害检测方法 被引量:8
2
作者 方宏远 马铎 +2 位作者 王念念 胡浩帮 董家修 《北京工业大学学报》 CAS CSCD 北大核心 2022年第6期561-571,共11页
地下管道是城市的血脉,年久失修将会导致管道服役性能降低,引发各种环境问题.因此,应当按时检测地下管道的病害类型及数量,为管道维修提供数据支持.但是,人工检测的方法费时费力,传统的计算机检测方法准确度和泛化能力较低.为了解决这... 地下管道是城市的血脉,年久失修将会导致管道服役性能降低,引发各种环境问题.因此,应当按时检测地下管道的病害类型及数量,为管道维修提供数据支持.但是,人工检测的方法费时费力,传统的计算机检测方法准确度和泛化能力较低.为了解决这一问题,该文提出了一种基于融合卷积神经网络的多种类地下管道病害分类算法.该算法结合了Inception网络构架和残差网络构架,提高了检测的准确度.对比现有的检测模型发现,该模型的平均准确率和Macro-F 1分数分别达到了93.15%和0.932,检测评估指标最优,证明该模型具有准确、全面、误检率低的检测特点.对测试集实际检测结果分析可知,该模型在不同光照、不同障碍物、整体和局部的场景下,均检测无误,结果准确,证明了该模型具有鲁棒性高、泛化能力强的特点. 展开更多
关键词 融合卷积神经网络 地下管道 多种类病害分类 深度学习 Inception网络 残差网络
在线阅读 下载PDF
基于特征融合卷积神经网络的FMCW雷达人体动作识别 被引量:12
3
作者 张丽丽 刘博 +1 位作者 屈乐乐 刘雨轩 《电讯技术》 北大核心 2022年第2期147-154,共8页
针对微多普勒特征识别人体动作的局限性,基于调频连续波(Frequency Modulated Continuous Wave,FMCW)雷达采用深度学习方法对人体动作识别,提出了一种特征融合卷积神经网络结构。利用FMCW雷达采样的人体动作回波数据分别构建出时间-距... 针对微多普勒特征识别人体动作的局限性,基于调频连续波(Frequency Modulated Continuous Wave,FMCW)雷达采用深度学习方法对人体动作识别,提出了一种特征融合卷积神经网络结构。利用FMCW雷达采样的人体动作回波数据分别构建出时间-距离特征和微多普勒特征图,将这两种特征图作为输入数据分别经由输入层进入卷积层,经Batch Normalization层、ReLU激活函数和最大池化层计算之后完成特征降维,然后对两种降维后的特征进行融合,融合后的特征图再经过卷积层和池化层计算获得更深层次的特征,最后经过两个全连接层,在输出层完成人体动作识别。采用英国格拉斯哥大学公开的数据集进行10折交叉验证,实验结果显示,与单一特征域的识别准确率相比,采用两种特征融合的结构进行人体动作识别的准确率提升了1%,验证了该模型的有效性。 展开更多
关键词 人体动作识别 调频连续波雷达 特征融合卷积神经网络 时间-距离特征 微多普勒特征
在线阅读 下载PDF
基于双卷积神经网络融合的注意力训练研究 被引量:2
4
作者 徐欣 张佳欣 张如浩 《数据采集与处理》 CSCD 北大核心 2022年第4期825-838,共14页
学生的学习情况与其课堂注意力状态密切相关。为了探寻注意力训练能否提高课堂注意力,对10名在校学生进行了α音乐训练,并收集了训练前后的非注意和注意状态的脑电(Electroence⁃phalogram,EEG)信号进行对比研究。由于EEG信号本质上是动... 学生的学习情况与其课堂注意力状态密切相关。为了探寻注意力训练能否提高课堂注意力,对10名在校学生进行了α音乐训练,并收集了训练前后的非注意和注意状态的脑电(Electroence⁃phalogram,EEG)信号进行对比研究。由于EEG信号本质上是动态的,且具有低信噪比和高冗余度的特性,为避免直接通过神经网络识别EEG信号效果差的问题,提取了信号的样本熵(Sample entropy,SampEn)、各个波段的能量和能量比共11个特征,并将这些特征进行融合转化为多特征图像,作为神经网络模型的输入。此外,将AlexNet和VGG11两个网络模型进行加权融合构成双卷积神经网络,进一步提高了图像分类性能。结果表明,与单个模型相比,双卷积神经网络融合模型的性能更佳,其识别准确率最高可达到97.53%。研究发现,经过α音乐训练,受试者的脑电特征与此前相比有显著性差异,且网络模型的分类准确率比训练前提高了4%,说明本文所提的α音乐训练能够提高健康学生的注意力水平。 展开更多
关键词 脑电信号 注意力 α音乐训练 卷积神经网络融合 多特征图像
在线阅读 下载PDF
包含跨域建模和深度融合网络的手绘草图检索 被引量:7
5
作者 于邓 刘玉杰 +2 位作者 邢敏敏 李宗民 李华 《软件学报》 EI CSCD 北大核心 2019年第11期3567-3577,共11页
在手绘草图检索(sketch-based image retrieval,简称SBIR)领域,引入一种手绘草图的新型检索模型.手绘草图与自然图片之间存在巨大的差异性,这是因为,与自然图片相比,手绘草图展现出高度抽象的视觉表达,用现有的方法对手绘草图进行特征提... 在手绘草图检索(sketch-based image retrieval,简称SBIR)领域,引入一种手绘草图的新型检索模型.手绘草图与自然图片之间存在巨大的差异性,这是因为,与自然图片相比,手绘草图展现出高度抽象的视觉表达,用现有的方法对手绘草图进行特征提取,其产生的特征描述子对于手绘草图的内容无法进行有效地拟合;对于相同的物体,不同的人群用手绘草图描述方式和表达也存在巨大的差距,这就使得手绘草图-自然图片的匹配更加困难;同时,将手绘草图与自然图片映射到相同视觉域的工作,也是一项具有困难的任务.所以,手绘草图检索技术是公认的比较有挑战性的任务.提出一种将手绘草图与自然图片在多个层次上映射到同一视觉域的策略来解决跨域的问题.同时,引入多层深度融合卷积神经网络(multi-layer deep fusion convolutional neural network)的框架来训练并获得手绘草图和自然彩色图片的多层特征表达.在Flickr15k图像数据库进行检索实验,实验结果显示,多层深度融合卷积网络学习到的特征的检索精度超过了现有的手工特征以及由自然图片或者手绘草图训练出来的卷积神经网络(convolutional neural network,简称CNN)的特征. 展开更多
关键词 手绘草图检索 跨域建模 多层深度融合卷积神经网络 特征融合 深度学习
在线阅读 下载PDF
基于可变形卷积与特征融合的机场道面裂缝检测算法 被引量:7
6
作者 李海丰 景攀 韩红阳 《南京航空航天大学学报》 CAS CSCD 北大核心 2021年第6期981-988,共8页
机场道面裂缝具有形态多变、宽度狭小、长短不一、且空间走势呈自由曲线的不规则特征,现有算法检测效果不佳。针对此问题,本文构建了一种基于可变形卷积与特征融合的神经网络(Deformable convolution and feature fusion neural network... 机场道面裂缝具有形态多变、宽度狭小、长短不一、且空间走势呈自由曲线的不规则特征,现有算法检测效果不佳。针对此问题,本文构建了一种基于可变形卷积与特征融合的神经网络(Deformable convolution and feature fusion neural network,DFNet)模型。首先由可变形卷积模块来强化特征提取网络对裂缝形态特征的学习;然后经多尺度卷积模块捕获不同感受野下裂缝的全局信息;最后通过特征融合模块来提取裂缝不同层次的特征,通过融合裂缝低级特征与高级特征,实现对机场道面裂缝的准确分割。在采集的实际机场道面裂缝数据集上,与其他6种现有算法进行了对比实验,本文算法在像素级分割的F1-Score上达到了90.95%,效果优于全部对比算法。DFNet算法提高了对机场道面裂缝检测的能力,实验结果表明本文算法较好地达到了工程实际要求。 展开更多
关键词 人工智能 机场道面裂缝检测 可变形卷积与特征融合神经网络 可变形卷积 多尺度卷积 特征融合
在线阅读 下载PDF
基于双图转换和融合CRNN网络的轴承故障诊断 被引量:10
7
作者 李喆 吐松江·卡日 +4 位作者 范想 范志鹏 万容齐 白新悦 吴俣潼 《振动与冲击》 EI CSCD 北大核心 2023年第19期240-248,共9页
针对一维振动序列输入制约卷积神经网络性能,且单一数据处理方法限制实际复杂工况下轴承故障特性的深层挖掘等问题,提出了一种基于双图转换与多卷积循环神经网络融合的滚动轴承故障诊断方法。分别利用格拉姆角差场和马尔可夫转移场编码... 针对一维振动序列输入制约卷积神经网络性能,且单一数据处理方法限制实际复杂工况下轴承故障特性的深层挖掘等问题,提出了一种基于双图转换与多卷积循环神经网络融合的滚动轴承故障诊断方法。分别利用格拉姆角差场和马尔可夫转移场编码方法将一维序列信号转换为二维图像。将转换后的两种模态图像同时输入多CRNN融合的Fu-CRNN网络模型,充分汲取两种转换方法优点并提高CRNN模型特征表达能力。实现轴承信号特征自适应提取及端到端诊断。为验证该方法的可靠性与优越性,选用凯斯西储大学滚动轴承数据集进行轴承故障诊断试验,并比较分析诊断性能。结果表明,所提模型识别准确率和泛化效果均优于单一模态样本输入模型,相较于其他常用算法表现更出色,可为样本构建和轴承故障诊断方法提供参考。 展开更多
关键词 滚动轴承 故障诊断 格拉姆角差场 马尔可夫转移场 融合卷积循环神经网络(CRNN)
在线阅读 下载PDF
强噪声干扰下基于SVMD-FFCNN的深沟球轴承故障分类模型
8
作者 李友家 张忠伟 +2 位作者 焦宗豪 李新宇 秦贺 《机电工程》 北大核心 2025年第4期686-696,共11页
针对滚动轴承振动信号易受到外界噪声的干扰,导致故障特征信号微弱甚至被淹没,难以提取有效的故障特征的问题,提出了一种基于逐次变分模态分解与特征融合卷积神经网络(SVMD-FFCNN)的故障诊断方法。首先,利用SVMD对原始振动信号进行了模... 针对滚动轴承振动信号易受到外界噪声的干扰,导致故障特征信号微弱甚至被淹没,难以提取有效的故障特征的问题,提出了一种基于逐次变分模态分解与特征融合卷积神经网络(SVMD-FFCNN)的故障诊断方法。首先,利用SVMD对原始振动信号进行了模态分解,得到了固有模态函数(IMF)分量,并计算了皮尔森相关系数,筛选出相关程度大的分量,对信号进行了重构,完成了信号的降噪工作,并以降噪后的信号作为输入数据;然后,搭建了特征融合卷积神经网络模型(FFCNN),对卷积神经网络(CNN)提取到的浅层特征以及利用不同映射方法获取的深层特征成分进行了融合,提取了更具代表性的故障特征;最后,以SoftMax作为分类器,进行了深沟球轴承故障的分类任务,采用SKF6203深沟球轴承,并利用搭建的轴承故障模拟实验台采集了深沟球轴承振动数据,对SVMD-FFCNN方法进行了实验验证,并将其与其他方法进行了对比分析。研究结果表明:SVMD方法能够有效降低噪声的干扰,相较于未经过SVMD降噪处理的信号,实测实验信号信噪比提升了116.22%,均方根误差减低了56.10%;SVMD-FFCNN方法在噪声环境下的平均准确精度达到了99.37%,且三个转速工况下的诊断精度均达到了99%以上。上述结果表明,该方法在噪声环境下具有更优越的故障诊断性能。 展开更多
关键词 滚动轴承 强噪声干扰 智能故障诊断 逐次变分模态分解 特征融合卷积神经网络 SoftMax分类器
在线阅读 下载PDF
基于特征融合度量学习的高压断路器机械故障诊断 被引量:9
9
作者 王艳新 闫静 +1 位作者 王建华 耿英三 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第9期98-105,共8页
数据驱动的深度学习方法在高压断路器机械故障诊断中取得了一定的成效,然而这些方法实现优异性能的前提是可获取海量训练样本,在现场数据匮乏场景下其诊断性能明显下降。为此,提出了一种新颖的特征融合度量学习模型用于现场小样本高压... 数据驱动的深度学习方法在高压断路器机械故障诊断中取得了一定的成效,然而这些方法实现优异性能的前提是可获取海量训练样本,在现场数据匮乏场景下其诊断性能明显下降。为此,提出了一种新颖的特征融合度量学习模型用于现场小样本高压断路器机械故障诊断。首先构建了特征融合卷积神经网络,有效提升了可鉴别特征提取能力。然后以K近邻算法作为度量学习器实现小样本数据的匹配和分类。最后通过改进中心损失进一步提升特征表示的分辨能力,并通过情景训练从实验室构建的大样本集中学习可迁移知识。实验结果表明,本文方法在每类支持集样本数为5时便可达到94.58%的诊断精度,相对于卷积神经网络提升了63.71%。同时,得益于情景训练方式本文方法有效避免了非平衡样本的问题。 展开更多
关键词 特征融合卷积神经网络 度量学习 故障诊断 小样本 高压断路器
在线阅读 下载PDF
基于改进谱峭度图与多维融合CNN的轴承故障诊断方法 被引量:3
10
作者 楼伟 陈曦晖 赵伟恒 《电子测量技术》 北大核心 2023年第5期185-191,共7页
针对轴承振动信号中存在与故障特征相关性较低成分的干扰导致故障诊断准确率降低的问题,提出了一种基于改进谱峭度图与多维融合CNN的轴承故障诊断方法。首先,为提高振动信号与故障特征的相关性,减少干扰成分,以双树复小波包变换为基础... 针对轴承振动信号中存在与故障特征相关性较低成分的干扰导致故障诊断准确率降低的问题,提出了一种基于改进谱峭度图与多维融合CNN的轴承故障诊断方法。首先,为提高振动信号与故障特征的相关性,减少干扰成分,以双树复小波包变换为基础构建改进谱峭度图模型,增强多分辨率差异性故障特征表达。然后,考虑丰富特征评价维度,构建多维融合CNN模型,将原始信号与改进谱峭度图共同作为多维特征输入实现故障精准诊断。实验结果表明,该方法能够提取各类轴承振动信号中具备差异性的故障特征,在多工况下均能够准确识别轴承故障,具有较好的诊断精度。 展开更多
关键词 故障诊断 集合经验模态分解 改进谱峭度图 双树复小波包变换 多维融合卷积神经网络
在线阅读 下载PDF
基于CNN-LSTM的QAR数据特征提取与预测 被引量:43
11
作者 张鹏 杨涛 +2 位作者 刘亚楠 樊志勇 段照斌 《计算机应用研究》 CSCD 北大核心 2019年第10期2958-2961,共4页
针对传统数据驱动的故障诊断方法难以从QAR数据中提取有效特征的问题,提出一种融合卷积神经网络(convolutional neural network,CNN)与长短时记忆网络(long short-term memory,LSTM)的双通道融合模型CNN-LSTM。CNN与LSTM分别作为两个通... 针对传统数据驱动的故障诊断方法难以从QAR数据中提取有效特征的问题,提出一种融合卷积神经网络(convolutional neural network,CNN)与长短时记忆网络(long short-term memory,LSTM)的双通道融合模型CNN-LSTM。CNN与LSTM分别作为两个通道,通过注意力机制(attention)融合,从而使模型能同时表达数据在空间维度和时间维度上的特征,并以时间序列预测的方式验证融合模型特征提取的有效性。实验结果表明,双通道融合模型与单一的CNN、LSTM相比,能够更有效地提取数据特征,模型单步预测与多步预测误差平均降低35.3%,为基于QAR数据的故障诊断提供一种新的研究思路。 展开更多
关键词 深度学习 融合卷积神经网络 长短时记忆网络 特征提取 时间序列预测
在线阅读 下载PDF
基于智能机器人的水下建筑物裂缝检测方法与应用 被引量:5
12
作者 刘巍 葛海彬 +3 位作者 徐妍彦 赵洪光 金京善 季昊巍 《长江科学院院报》 CSCD 北大核心 2023年第4期164-169,190,共7页
针对水下建筑物裂缝检测问题,研发了一款新型智能水下机器人,此机器人具备恒温控制、低耗能驱动功能,可以在超低温深水环境下进行自主采集数据、导航与定位。基于机器人采集得到的图像数据,在图像预处理、深度卷积网络理论和裂缝特征数... 针对水下建筑物裂缝检测问题,研发了一款新型智能水下机器人,此机器人具备恒温控制、低耗能驱动功能,可以在超低温深水环境下进行自主采集数据、导航与定位。基于机器人采集得到的图像数据,在图像预处理、深度卷积网络理论和裂缝特征数据标注的基础上,改进了原始的CNN模型,提出了特征金字塔融合卷积神经网络模型FPECNN,对不同类型的裂缝进行了提取。将FPECNN网络应用于莲花水电站大坝的裂缝检测工程中,计算结果表明FPECNN在检测率、召回率和F值上都处于较高的水平,达到了97.26%、98.04%和96.65%,耗时为3.12 s;FPECNN网络普适性与鲁棒性更佳,能够适应大多数的裂缝数据,生存能力更好,有利于解决常规CNN模型在水下建筑物检测中检测率低、效率低的问题。该智能机器人可将检测人员从高寒水下恶劣、繁重和危险的现场作业中解脱出来,同时解决水电站传统检测中因弃水造成的巨大经济损失问题,并能提高检测效率和精度。 展开更多
关键词 智能机器人 裂缝检测 水下建筑物 特征金字塔融合卷积神经网络 检测率
在线阅读 下载PDF
基于改进的DCNN人体行为识别 被引量:5
13
作者 周鹏 袁国良 +1 位作者 张颖 孙莉 《传感器与微系统》 CSCD 北大核心 2021年第10期125-128,共4页
在基于可穿戴传感器的人体行为识别领域中,提取原始数据的有效特征和建立合适的分类模型是提高识别准确率的关键。针对上述问题,提出一种改进的深度卷积神经网络(DCNN)模型,在经典的DCNN模型中增加了信号融合单元,并提出一种将时间序列... 在基于可穿戴传感器的人体行为识别领域中,提取原始数据的有效特征和建立合适的分类模型是提高识别准确率的关键。针对上述问题,提出一种改进的深度卷积神经网络(DCNN)模型,在经典的DCNN模型中增加了信号融合单元,并提出一种将时间序列转换成单通道行为图片的方法,由加速度、角速度和俯仰角信号构成的行为图片在经过信号融合单元处理后,可实现跨通道的信息融合,然后提取行为图片的张量特征,实现对行走、奔跑、坐下、躺下、跌倒、跳跃共6种日常行为的识别。实验表明:该方法在UCI开源数据集上的识别率达到97.05%,高于传统分类模型的识别率。 展开更多
关键词 行为识别 信号融合 深度卷积神经网络(DCNN) 融合深度卷积神经网络(F-DCNN)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部