期刊文献+

基于改进谱峭度图与多维融合CNN的轴承故障诊断方法 被引量:1

Bearing fault diagnosis method based on improved spectral kurtosis map and multidimensional fusion CNN
在线阅读 下载PDF
导出
摘要 针对轴承振动信号中存在与故障特征相关性较低成分的干扰导致故障诊断准确率降低的问题,提出了一种基于改进谱峭度图与多维融合CNN的轴承故障诊断方法。首先,为提高振动信号与故障特征的相关性,减少干扰成分,以双树复小波包变换为基础构建改进谱峭度图模型,增强多分辨率差异性故障特征表达。然后,考虑丰富特征评价维度,构建多维融合CNN模型,将原始信号与改进谱峭度图共同作为多维特征输入实现故障精准诊断。实验结果表明,该方法能够提取各类轴承振动信号中具备差异性的故障特征,在多工况下均能够准确识别轴承故障,具有较好的诊断精度。 Aiming at the problem that the interference of components with low correlation with fault features in the bearing vibration signal reduces the fault diagnosis accuracy,a bearing fault diagnosis method based on improved spectral kurtosis map and multi-dimensional fusion CNN is proposed.To improve the correlation between vibration signals and fault features and reduce interference components,an improved spectral kurtosis graph model was constructed based on DTCWPT to enhance the expression of multi-resolution differential fault features.Then,considering the rich feature dimension,a multi-dimensional fusion CNN model is constructed,and the original signal and the improved spectral kurtosis map are used as input together.The experimental results show that the method can extract different fault features in the vibration signals of various types of bearings,and can accurately identify bearing faults under multiple working conditions,with good diagnostic accuracy.
作者 楼伟 陈曦晖 赵伟恒 Lou Wei;Chen Xihui;Zhao Weiheng(College of Mechanical and Electrical Engineering,Hohai University,Changzhou 213022,China)
出处 《电子测量技术》 北大核心 2023年第5期185-191,共7页 Electronic Measurement Technology
基金 国家自然科学基金(51905147) 江苏省自然科学基金面上项目(BK20201163)资助
关键词 故障诊断 集合经验模态分解 改进谱峭度图 双树复小波包变换 多维融合卷积神经网络 fault diagnosis ensemble empirical mode decomposition spectral kurtosis graph DTCWPT multidimensional fusion CNN
作者简介 楼伟,硕士,主要研究方向为机械故障诊断等。E-mail:louwhis@icloud.com;陈曦晖,副教授,博士,主要研究方向为机械故障诊断、信号处理与健康管理等。E-mail:chenxh@hhu.edu.cn;赵伟恒,硕士,主要研究方向为机械故障诊断等。E-mail:211319010037@hhu.edu.cn
  • 相关文献

参考文献7

二级参考文献58

  • 1刘朝阳,穆朝絮,孙长银.深度强化学习算法与应用研究现状综述[J].智能科学与技术学报,2020(4):314-326. 被引量:53
  • 2康守强,刘哲,王玉静,王庆岩,兰朝凤.基于改进DQN网络的滚动轴承故障诊断方法[J].仪器仪表学报,2021,42(3):201-212. 被引量:28
  • 3张淑清,苑世钰,姚玉永,穆勇,王丽丽.基于ICEEMD及AWOA优化ELM的机械故障诊断方法[J].仪器仪表学报,2019,40(11):172-180. 被引量:27
  • 4Bengio Y, Delalleau O. On the expressive power of deep ar- chitectures [ C ]. Berlin, Heidelberg: Algorithmic Learning Theory, Springer :2011.
  • 5Bourlard H, Kamp Y. Auto - association by multilayer per- ceptrons and singular value decomposition [J~. Biological Cybernetics, 1988,59 (4 - 5 ) : 291 - 294.
  • 6Hinton G, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets [ J ]. Neural Computation, 2006, 18 ( 7 ) :1527 - 1554.
  • 7Bengio Y, Lamblin P, Popovici D, et al. Greedy layer - wise training of deep networks [ ] ]. Advances in Neural Informa- tion Processing Systems,2007 (19) :153 -160.
  • 8Le Cun Y, Bottou L, Bengio Y, et al. Gradient - based learn- ing applied to document recognition [ J ]. Proceedings of the IEEE, 1998,86 ( 11 ) :2278 - 2324.
  • 9Amaral T, Silva L M, Alexandre L A, et al. Using different cost functions to train stacked auto- encoders [C]. 12th Mexican International ConferenceI on Artificial Intelligence (MICAI) ,IEEE,2013.
  • 10Liu W, Pokharel P P, Principe J C. Correntropy:A localized similarity measure [ C]. IJCNN'06, International Joint Con- ference on Neural Networks ,IEEE ,2006.

共引文献116

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部