期刊文献+
共找到1,125篇文章
< 1 2 57 >
每页显示 20 50 100
基于自适应遗传粒子群优化模糊神经网络的疲劳驾驶预测模型 被引量:7
1
作者 孙伟 张小瑞 +2 位作者 唐慧强 夏旻 张为公 《汽车工程》 EI CSCD 北大核心 2013年第3期219-223,228,共6页
为提高疲劳驾驶的预测精度,提出了基于减法聚类和遗传粒子群优化模糊神经网络的疲劳驾驶预测模型。根据训练样本,利用减法聚类确定网络结构和初始参数;借助于进化速度因子,采用自适应遗传粒子群算法优化网络参数。利用疲劳驾驶实车模拟... 为提高疲劳驾驶的预测精度,提出了基于减法聚类和遗传粒子群优化模糊神经网络的疲劳驾驶预测模型。根据训练样本,利用减法聚类确定网络结构和初始参数;借助于进化速度因子,采用自适应遗传粒子群算法优化网络参数。利用疲劳驾驶实车模拟实验获得的数据,对该模型进行了训练和测试,并将结果与传统的粒子群、遗传和反向传播算法进行对比。结果表明,该模型不仅精简了网络结构,缩短了训练时间,而且减小了全局误差,提高了预测精度。 展开更多
关键词 疲劳驾驶 减法聚类 自适应遗传粒子群优化 模糊神经网络
在线阅读 下载PDF
基于多目标粒子群-遗传混合算法的高速球轴承优化设计方法 被引量:1
2
作者 杨文 叶帅 +2 位作者 姚齐水 余江鸿 胡美娟 《机电工程》 北大核心 2025年第2期226-236,共11页
目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出... 目前以新能源汽车电驱系统等为代表的超高转速运行场景越来越多,对轴承类关键零部件的性能要求也不断提高,对轴承的承载性能和温升控制也提出了更高的要求。为了优化轴承的结构,提升其服役性能,以新能源汽车电驱系统6206轴承为例,提出了一种基于多目标粒子群-遗传混合算法的球轴承结构优化设计方法。首先,建立了以轴承最大额定动载荷、最大额定静载荷和最小摩擦生热率为目标函数的优化数学模型;然后,利用多目标粒子群算法(MOPSO)的全局搜索能力和改进非支配排序遗传算法(NSGA-II)的进化操作,引入粒子寻优速度控制策略、交叉变异策略和罚函数机制,解决了带约束优化问题求解和局部最优问题,增强了算法的收敛速度和解集探索能力;最后,在特定工况下对轴承结构进行了优化,采用层次分析法,从Pareto前沿中优选了内外圈沟曲率半径系数、滚动体数量、滚动体直径和节圆直径的最优值。研究结果表明:在16 kN径向载荷、15 000 r/min的高转速工况下,以新能源汽车电驱系统6206型深沟球轴承为例进行了分析,结果显示,优化后的轴承接触应力下降了21.2%,应变下降了25.6%,摩擦生热下降了16.7%,体现了该方法在收敛性能、寻优速度等方面的优势。该优化设计方法可为球轴承的工程应用提供有价值的参考。 展开更多
关键词 高速球轴承结构设计 多目标粒子-遗传混合算法 改进非支配排序遗传算法 优化设计目标函数 层次分析法 6206型深沟球轴承
在线阅读 下载PDF
自适应混合粒子群优化DMC及其在脱硫系统中的应用
3
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
基于多群自适应协同粒子群优化算法的光储热泵系统研究
4
作者 刘鑫冉 吴振奎 +1 位作者 张腾飞 宋庚岭 《现代电子技术》 北大核心 2025年第10期127-134,共8页
为解决小型电热耦合系统的资源失配问题,并缓解北方地区供热压力和提高离网负荷供电的可靠性,通过整合光伏发电单元、蓄电池储能单元与高效水源热泵的供暖系统,将各部分看作不同子群,提出一种求解系统能量配比的最优解的多群自适应协同... 为解决小型电热耦合系统的资源失配问题,并缓解北方地区供热压力和提高离网负荷供电的可靠性,通过整合光伏发电单元、蓄电池储能单元与高效水源热泵的供暖系统,将各部分看作不同子群,提出一种求解系统能量配比的最优解的多群自适应协同粒子群优化算法。修正各子群的粒子惯性权重,通过多群协同机制避免求解过程陷入局部最优,并采用自适应性策略(ACS)来控制历史信息的影响,以提高子群的搜索效率和目标解的精度。实验结果表明:所提方法优化了光伏-储能-热泵系统的协同运行能力,避免了资源失配造成的能量浪费问题,且能够实现以清洁能源为热泵供电的目标,有效缓解北方地区冬季供热压力;该方法还将离网负荷供电可靠性提升至更高水平,兼具环境效益与工程应用潜力。 展开更多
关键词 热泵供暖系统 光伏发电 蓄电池储能 自适应多目标粒子算法 能量分配 系统优化
在线阅读 下载PDF
一种基于遗传算法改进粒子群算法的光储氢并网型微电网容量配置优化模型研究
5
作者 徐展鹏 陈福新 +1 位作者 杨雪凡 卢琴芬 《太阳能学报》 北大核心 2025年第7期144-153,共10页
以并网型光储氢微电网为研究对象,为提升其可再生能源消纳能力、碳减排能力和经济性,提出一种基于遗传算法改进粒子群算法的容量配置优化模型。优化模型目标函数为最大年综合利润,不仅将投资运维、绿证交易和碳交易机制引入系统运行成... 以并网型光储氢微电网为研究对象,为提升其可再生能源消纳能力、碳减排能力和经济性,提出一种基于遗传算法改进粒子群算法的容量配置优化模型。优化模型目标函数为最大年综合利润,不仅将投资运维、绿证交易和碳交易机制引入系统运行成本和收益,且提出一种基于电氢储能实时收益系数的协调控制策略,使得光氢利润基于分时电价进行实时变化、储能设备的出力顺序根据实时收益系数来优化;优化变量为光、氢与储能的容量;优化方法为遗传算法改进的粒子群优化算法,其在改进粒子群优化算法引入遗传算法的思想,对粒子种群的位置进行选择、交叉与变异操作,提高全局优化能力。通过优化设计实例与影响因素分析实例,验证了优化模型的有效性。 展开更多
关键词 光氢储微电网 并网型 容量配置 遗传算法 改进粒子优化算法
在线阅读 下载PDF
邻域自适应粒子群算法求解地源热泵区域能源系统鲁棒优化调度问题
6
作者 吴亮红 王维 +1 位作者 张红强 贾睿 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第6期1089-1100,共12页
针对地源热泵区域能源系统中冷热负荷和机组效能的不确定性,本文提出了一种考虑双重不确定性的鲁棒优化调度方法.首先,基于多面体不确定模型描述调度模型中的鲁棒变量.然后,针对建筑冷热负荷不确定性,采用对偶原理将双层优化模型等价为... 针对地源热泵区域能源系统中冷热负荷和机组效能的不确定性,本文提出了一种考虑双重不确定性的鲁棒优化调度方法.首先,基于多面体不确定模型描述调度模型中的鲁棒变量.然后,针对建筑冷热负荷不确定性,采用对偶原理将双层优化模型等价为单层优化模型;对于机组效能不确定性,采用场景法进行分析.最后,采用多目标优化约束处理方法处理鲁棒优化调度模型中的约束条件.同时,为更加高效、准确求解所构建的优化调度模型,提出了一种邻域自适应粒子群优化算法(NAPSO).实验结果表明,在制冷和制热工况下,与经验运行策略相比,本文所提方法可分别减少7.22%和5.55%的系统运行成本,是一种解决地源热泵区域能源系统鲁棒优化调度的有效方法. 展开更多
关键词 地源热泵 鲁棒优化调度 邻域自适应 粒子优化 不确定性
在线阅读 下载PDF
粒子群优化随机森林机床热误差建模与补偿
7
作者 苏哲 郭世杰 +3 位作者 丁强强 唐术锋 邹云鹤 吕贺 《机床与液压》 北大核心 2025年第12期8-16,共9页
为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策... 为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策略来避免粒子群算法陷入局部最优解,构建了基于APSO-RF的直线轴热误差预测模型。为了验证模型的准确性与实用性,在VDL-600A型加工中心上以X轴为例进行热误差测量与建模验证,基于FANUC系统坐标原点偏移(EMZPS)功能结合自主搭建的热误差辅助补偿系统,实现了计算机与系统间的通信连接。结果表明:APSO-RF热误差模型的均方根误差相比PSO-SVM、RF及BP模型分别降低了18.3%、45.2%及47.2%,有效提高了建模精度。根据构建的模型与补偿系统功能模块,补偿后热误差最大值由71.15μm降至13.4μm,精度提升81.2%,所构建的热误差补偿方法可有效提高机床的加工精度及稳定性。 展开更多
关键词 数控机床 热误差补偿 自适应粒子优化随机森林(APSO-RF)模型 浣熊优化算法(COA)
在线阅读 下载PDF
基于改进粒子群优化算法的船舶避碰研究 被引量:2
8
作者 朱凯鹏 王全政 +3 位作者 杨文政 于庆州 王泽凡 王晓原 《传感器与微系统》 北大核心 2025年第4期40-43,47,共5页
随着海上贸易的日益增长,海洋运输已逐渐成为世界各国运输和贸易发展的重要环节,如何避免船舶碰撞已成为海上贸易中的一个重要问题。针对海上船舶避碰问题,本文提出了一种改进粒子群优化(IPSO)算法,该算法根据当前粒子目标函数的平均值... 随着海上贸易的日益增长,海洋运输已逐渐成为世界各国运输和贸易发展的重要环节,如何避免船舶碰撞已成为海上贸易中的一个重要问题。针对海上船舶避碰问题,本文提出了一种改进粒子群优化(IPSO)算法,该算法根据当前粒子目标函数的平均值动态调整惯性权值,另外考虑到船舶操纵的安全性,改进了适应度函数,并结合IPSO算法,对函数进行求解。通过MATLAB仿真结果表明,与传统的PSO算法相比,IPSO算法的收敛速度提高了37.5%,搜索效率得到显著增强。 展开更多
关键词 船舶避碰 改进粒子优化算法 自适应惯性权值 避碰决策
在线阅读 下载PDF
基于粒子群优化BP神经网络的核事故源项反演
9
作者 游清悦 曹博 +3 位作者 彭丁萍 李中昊 缪学伟 陈洲亮 《核电子学与探测技术》 北大核心 2025年第3期371-381,共11页
核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所... 核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所需的数据集。利用Matlab构建了粒子群算法(Particle Swarm Optimization,PSO)优化误差反向传播(Back Propagation,BP)神经网络的核事故源项反演模型,同时考虑了粒子群算法中超参数和适应度函数的不同对算法优化性能的影响。结果表明:PSOBP模型源项反演测试结果的平均绝对百分比误差为2.14%,平均绝对误差为0.011437,均方差为0.000685,各个评价指标明显优于BP神经网络,验证了该模型的可行性,有助于快速核应急响应。 展开更多
关键词 源项反演 BP神经网络 粒子优化 参数优化 适应度函数
在线阅读 下载PDF
基于环境识别策略的多目标自适应粒子群 算法及应用
10
作者 武保同 舒若琦 陈志祥 《计算机应用研究》 北大核心 2025年第10期2980-2988,共9页
针对标准的多目标粒子群算法在寻优过程中易出现局部最优、收敛速度过快和精度较低等问题,提出了一种基于环境识别的多目标自适应粒子群算法。利用佳点集策略生成初始种群,使个体均匀分布在解空间内;采用非线性惯性权重机制和交叉变异策... 针对标准的多目标粒子群算法在寻优过程中易出现局部最优、收敛速度过快和精度较低等问题,提出了一种基于环境识别的多目标自适应粒子群算法。利用佳点集策略生成初始种群,使个体均匀分布在解空间内;采用非线性惯性权重机制和交叉变异策略,避免算法在搜索过程中过快收敛;提出基于环境识别的自适应学习算子和自适应跳跃协作算子,分别通过自识别解空间内种群多样性程度和粒子小生境内拥挤度信息实现粒子间信息的交互和学习。通过多组基准函数的仿真实验进行比较,结果表明算法的搜索能力和优化精度都得到明显改善。最后,通过一个带有NP-hard性质的实际多阶段生产案例验证了算法的实用性。 展开更多
关键词 粒子算法 进化计算 自适应学习 多目标优化 多阶段生产问题
在线阅读 下载PDF
基于改进自适应多种群遗传算法的结构-控制系统一体化优化 被引量:5
11
作者 梅真 龚嘉诚 +2 位作者 高毅超 魏琳 李海锋 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期799-809,共11页
提出一种改进的自适应多种群遗传算法,以更好地解决建筑结构-主动控制系统一体化优化问题,即同时对被控结构参数、控制算法参数、主动作动器布置位置进行优化。该遗传算法对编码方法、初始种群生成、选择策略、交叉概率和变异概率的自... 提出一种改进的自适应多种群遗传算法,以更好地解决建筑结构-主动控制系统一体化优化问题,即同时对被控结构参数、控制算法参数、主动作动器布置位置进行优化。该遗传算法对编码方法、初始种群生成、选择策略、交叉概率和变异概率的自适应调整、多种群协同进化中移民策略等进行改进。研究结果表明:改进的自适应多种群遗传算法和改进的基本遗传算法优化结果总体一致,表明前者分析结果是正确的,并且具有较高的精度;改进的自适应多种群遗传算法和改进的基本遗传算法首次得到优化分析最优解的平均进化代数分别为320与730,表明前者比后者收敛速度更快;改进的自适应多种群遗传算法每次能达到或接近最优解,可有效克服基本遗传算法优化结果随机性较强的缺点;经改进的自适应多种群遗传算法优化的主动控制系统取得明显减振效果,E1 Centro波输入时,主动控制结构层间位移角峰值和绝对加速度峰值较无控时分别平均减小54.5%与46.7%。算例结果表明了改进的自适应多种群遗传算法的有效性,实现了对建筑结构-主动控制系统的一体化优化。 展开更多
关键词 主动控制 结构-控制系统 一体化优化 自适应遗传算法 多种
在线阅读 下载PDF
自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用 被引量:2
12
作者 程金芮 金瑾 +3 位作者 张朝龙 孔超 何嘉 张鑫 《计算机应用》 CSCD 北大核心 2024年第S01期60-64,共5页
针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与... 针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与局部信息的协同作用和智能切换学习策略。具体地,ARCLPSO利用全局和局部信息的协同作用令粒子向更优的方向移动,通过智能的切换粒子学习策略平衡粒子的搜索性能和收敛速度,提高搜索速度和搜索质量。在NAS-Bench-101数据集上的实验结果表明,ARCLPSO的收敛时间相较于传统进化算法(REA)和随机搜索(RS),分别减少了40.9%和55.2%。 展开更多
关键词 神经网络架构搜索 粒子优化 进化算法 NAS-Bench-101 自适应的协作学习算法
在线阅读 下载PDF
基于自适应粒子群优化算法的串联复合涡轮储能优化策略 被引量:2
13
作者 王震 张珊珊 +1 位作者 邬斌扬 苏万华 《计算机应用》 CSCD 北大核心 2024年第2期611-618,共8页
针对发动机串联复合涡轮发电系统储能困难等问题,提出了一种基于自适应粒子群优化(SAPSO)算法的最大功率点追踪(MPPT)方法,增强发电系统功率的捕获能力。此外,采用混合储能系统(HESS)替代单一蓄电池储能,实现电能的高效、稳定存储。通过... 针对发动机串联复合涡轮发电系统储能困难等问题,提出了一种基于自适应粒子群优化(SAPSO)算法的最大功率点追踪(MPPT)方法,增强发电系统功率的捕获能力。此外,采用混合储能系统(HESS)替代单一蓄电池储能,实现电能的高效、稳定存储。通过Matlab/Simulink软件,建立了基于发动机串联复合涡轮发电的储能优化控制仿真模型,对比分析了不同控制方法在设定工况下的功率追踪性能以及混合储能系统的储能特性。仿真结果表明,相较于传统扰动观测法(P&O)控制方法,在所提的SAPSO-MPPT方法下,发电功率提高了190 W,响应时间缩短了0.15 s。同时,HESS能够有效追踪母线上的需求功率,电能回收效率高达95.3%。最后,基于Y24型改装发动机台架搭建了串联复合涡轮发电系统实验平台,对所提储能优化控制策略的节油潜力进行了实验验证。结果表明,SAPSO-MPPT+HESS储能优化策略能够有效提高排气能量回收效率,优化后系统总热效率比原发动机提高了提高0.53个百分点。 展开更多
关键词 自适应粒子优化算法 串联复合涡轮发电系统 最大功率点追踪 混合储能系统
在线阅读 下载PDF
基于峰值导向型粒子群优化算法的城市水文模型自动率定方法
14
作者 许王辰 陈瑞弘 孙岸炜 《水利水电科技进展》 北大核心 2025年第4期31-38,共8页
针对城市多参数水文模型中径流及峰现时间人工率定效率低、精度不足的问题,提出一种基于改进粒子群优化(PSO)算法的模型参数自动率定方法。该方法在PSO算法中引入Logistic映射和莱维飞行,分别用于粒子初始化和位置更新,以避免陷入局部最... 针对城市多参数水文模型中径流及峰现时间人工率定效率低、精度不足的问题,提出一种基于改进粒子群优化(PSO)算法的模型参数自动率定方法。该方法在PSO算法中引入Logistic映射和莱维飞行,分别用于粒子初始化和位置更新,以避免陷入局部最优;同时结合城市产汇流模型特征,构建包含整体拟合、峰值及峰现时间的加权多目标适应度函数,以提高模型对关键水文特征的捕捉能力。通过Python实现该方法与机理模型(雨洪管理模型,SWMM)的交互,并利用试验场实测数据对10个关键水文参数进行率定,比较不同权重取值的适应度函数的拟合效果。结果表明,构建的加权多目标适应度函数在城市排水系统应急调度应用中更具优势,尤其在提高峰值与峰现时间模拟精度方面表现更优。将该方法应用于九江实际排水系统,峰值误差和峰现时间误差分别为0.56%和-6.82%,验证了方法的可行性与准确性。 展开更多
关键词 城市水文模型 多目标适应度函数 粒子优化算法 自动率定 SWMM
在线阅读 下载PDF
改进粒子群算法的径向柱塞液压马达内曲线优化
15
作者 李佳璇 康绍鹏 +4 位作者 杨静 刘凯磊 强红宾 柯贤胜 崔毅 《现代制造工程》 北大核心 2025年第2期69-75,共7页
径向柱塞液压马达在中大型机械装备中应用十分广泛,然而因其内部存在冲击与疲劳磨损等问题,对径向柱塞液压马达的寿命与性能造成了一定的影响。针对上述问题,提出了一种改进粒子群算法优化径向柱塞液压马达内曲线的方法,该方法将等加速... 径向柱塞液压马达在中大型机械装备中应用十分广泛,然而因其内部存在冲击与疲劳磨损等问题,对径向柱塞液压马达的寿命与性能造成了一定的影响。针对上述问题,提出了一种改进粒子群算法优化径向柱塞液压马达内曲线的方法,该方法将等加速度曲线重构为含补偿区的等加速度曲线,以减小冲击和接触应力突变值。以粒子群算法(Particle Swarm Optimization,PSO)为基础,加入自适应非线性动态权重与多子种群竞争优化策略,构建一种改进粒子群算法,对各区段角度进行重新分配,重新生成含补偿区的径向柱塞液压马达内曲线。对比优化前后的结果表明,最大接触应力下降了2.54%,最大接触应力处的突变值下降至0;接触应力不再阶跃式上升,有上升过程,冲击较小。该研究能够为径向柱塞液压马达的设计提供参考,有效减缓疲劳与磨损,降低冲击影响,从而延长液压马达的使用寿命。 展开更多
关键词 径向柱塞液压马达 内曲线 自适应非线性动态权重 多子种竞争优化策略 改进粒子算法
在线阅读 下载PDF
自适应粒子群算法汽车传动系统参数优化匹配 被引量:1
16
作者 吴素珍 郑群雄 毕建平 《机械设计与制造》 北大核心 2024年第12期51-55,共5页
为提高汽车的动力性,降低汽车的燃油消耗,提出一种传动系统参数多目标优化匹配方法。基于机械式传动系统,分别以百公里燃油消耗量和(0~100)km/h加速时间为优化分目标,构建整车动力性模型和经济性模型;通过设定不同的动力性约束指标,引... 为提高汽车的动力性,降低汽车的燃油消耗,提出一种传动系统参数多目标优化匹配方法。基于机械式传动系统,分别以百公里燃油消耗量和(0~100)km/h加速时间为优化分目标,构建整车动力性模型和经济性模型;通过设定不同的动力性约束指标,引入加权系数法和罚函数,建立了多工况下整车传动系统的参数优化模型。为提高传动系参数的匹配程度,提出一种基于动态学习因子和自适应调节惯性权重策略下的改进自适应粒子群优化算法,获得整车传动系统参数的最优集。仿真结果表明,改进后的算法收敛速度快,更具“活”性,很好地避免了算法的“早熟收敛”,较传统的自适应算法而言,在六循环工况下的百公里油耗减少了1.5%,(0~100)km/h加速时间缩短了2.3%,最高车速也提高了0.53%,这些结果都充分验证了改进的自适应粒子群算法的可靠性和有效性。 展开更多
关键词 传动系参数 自适应粒子算法 仿真 参数优化匹配
在线阅读 下载PDF
基于自适应遗传-粒子群优化算法的风电场微观选址优化 被引量:11
17
作者 徐佳楠 张天瑞 李玉龙 《科学技术与工程》 北大核心 2023年第16期6917-6922,共6页
为了减小尾流效应对风电场发电量的影响,提高风能利用率,提出了一种自适应权重的遗传-粒子群优化算法(genetic-particle swarm optimization algorithm,GA-PSO)。首先,以风电场单位发电成本为目标函数,风机坐标为优化变量,通过在优化变... 为了减小尾流效应对风电场发电量的影响,提高风能利用率,提出了一种自适应权重的遗传-粒子群优化算法(genetic-particle swarm optimization algorithm,GA-PSO)。首先,以风电场单位发电成本为目标函数,风机坐标为优化变量,通过在优化变量的速度更新中加入惯性权重,以改变算法的寻优速度;其次,在WASP软件选址的基础上,对风电机组进行布局优化;进而,将计算结果与遗传算法(genetic algorithm,GA)、萤火虫算法(firefly algorithm,FA)和粒子群(particle swarm algorithm,PSO)优化算法进行对比。结果表明:运用PGOA算法优化后的风电场单位发电成本为2016元/GWh,减少了232元/GWh,年发电量为82.633 GWh,比优化前提高了8.538 GWh,同时尾流损失减小了1.12%。可见研究结论对未来的风电场微观选址具有一定指导意义。 展开更多
关键词 风电场 微观选址 尾流效应 布局优化 风电成本 自适应权重 遗传-粒子优化算法(GA-PSO)
在线阅读 下载PDF
考虑站点转乘的公交接驳地铁站点群线路优化
18
作者 王连震 杜翼飞 +2 位作者 刘克毅 周铭 薛淑祺 《北京交通大学学报》 北大核心 2025年第4期41-51,共11页
为促进公交与地铁之间的有效接驳,针对地铁站点群周边接驳公交线路的客流时空分布及换乘效率进行协同优化研究.构建考虑系统总成本最小化和线网换乘需求最大化的多目标优化模型,并增设换乘时间成本和换乘次数的惩罚机制,对涉及两次或更... 为促进公交与地铁之间的有效接驳,针对地铁站点群周边接驳公交线路的客流时空分布及换乘效率进行协同优化研究.构建考虑系统总成本最小化和线网换乘需求最大化的多目标优化模型,并增设换乘时间成本和换乘次数的惩罚机制,对涉及两次或更多换乘的情况加以约束,促使系统在设计时尽可能减少不必要的换乘.引入自适应精英保留策略和惯性系数动态调整策略,设计并采用遗传粒子群混合算法来求解模型.研究结果表明:在接驳公交服务能力方面,相较于原有公交线网,优化后的公交载客量提升约23%;在经济性维度,乘客人均出行成本降低约9%;在算法性能上,所设计的混合优化算法较传统遗传算法运行速度提升15.4%.优化模型在换乘吸引力、人均出行成本等多个关键指标上均优于既有公交线路,验证了模型在提升接驳公交网络运营效率和服务质量方面的有效性,可以为城市公共交通系统的精细化管理和智能化升级提供参考. 展开更多
关键词 城市交通 地铁站点 接驳公交线路 多目标协同优化 遗传粒子混合算法
在线阅读 下载PDF
基于自适应混沌粒子群优化算法的多目标无功优化 被引量:79
19
作者 李娟 杨琳 +2 位作者 刘金龙 杨德龙 张晨 《电力系统保护与控制》 EI CSCD 北大核心 2011年第9期26-31,共6页
针对粒子群无功优化中由于随机生成代表控制变量值的粒子,使得在优化迭代过程中易陷入局部最优解,而且后期收敛速度慢等问题,将混沌优化算法融合到粒子群算法中,提出了混沌粒子群算法求解多目标无功优化问题。该算法在初始化粒子即无功... 针对粒子群无功优化中由于随机生成代表控制变量值的粒子,使得在优化迭代过程中易陷入局部最优解,而且后期收敛速度慢等问题,将混沌优化算法融合到粒子群算法中,提出了混沌粒子群算法求解多目标无功优化问题。该算法在初始化粒子即无功优化控制变量值时,采用混沌思想,增加控制变量取值的多样性;通过粒子群无功优化算法计算各个粒子对应的适应值即无功优化目标函数值,并按照其大小择优选取控制变量值进行混沌优化以帮助无功优化控制变量跳出局部极值区域;并根据无功优化目标函数值自适应地调整其惯性权重系数以提高全局与局部搜索能力。通过算例分析表明,采用自适应混沌粒子群算法进行无功优化,能够及时跳出局部最优得到全局最优解,且收敛速度快。 展开更多
关键词 自适应 混沌粒子优化算法 无功优化 惯性权重
在线阅读 下载PDF
基于遗传交叉因子的改进粒子群优化算法 被引量:35
20
作者 李季 孙秀霞 +1 位作者 李士波 李睿 《计算机工程》 CAS CSCD 北大核心 2008年第2期181-183,共3页
提出一种基于遗传交叉因子的改进粒子群优化算法,通过自适应变化惯性权重来改善算法的收敛性能,借鉴遗传算法中的选择交叉操作增加粒子多样性,通过引入交叉因子增强群体粒子的优良特性,减小了算法陷入局部极值的可能。对几个典型的测试... 提出一种基于遗传交叉因子的改进粒子群优化算法,通过自适应变化惯性权重来改善算法的收敛性能,借鉴遗传算法中的选择交叉操作增加粒子多样性,通过引入交叉因子增强群体粒子的优良特性,减小了算法陷入局部极值的可能。对几个典型的测试函数进行仿真表明,该算法较标准粒子群优化算法(PSO)提高了全局搜索能力和收敛速度,改善了优化性能。 展开更多
关键词 粒子优化算法 交叉因子 演化计算 适应 遗传算法
在线阅读 下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部