期刊文献+
共找到808篇文章
< 1 2 41 >
每页显示 20 50 100
限制速度粒子群优化和自适应速度粒子群优化在无约束优化问题中的应用 被引量:15
1
作者 许君 鲁海燕 石桂娟 《计算机应用》 CSCD 北大核心 2015年第3期668-674,684,共8页
限制速度粒子群优化(RVPSO)和自适应速度粒子群优化(SAVPSO)是近年来提出的专门求解约束优化问题(COP)的粒子群优化算法,但目前尚无两算法在无约束优化应用方面的研究。为此,研究上述算法在无约束优化中的有效性和性能特点,并针对算法... 限制速度粒子群优化(RVPSO)和自适应速度粒子群优化(SAVPSO)是近年来提出的专门求解约束优化问题(COP)的粒子群优化算法,但目前尚无两算法在无约束优化应用方面的研究。为此,研究上述算法在无约束优化中的有效性和性能特点,并针对算法保守性较强的特点,分别引入混沌因子和随机优化策略对算法进行改进,从而提高算法的全局搜索能力;另外,还研究了不同参数设置对算法性能的影响。在5个典型测试函数上的仿真实验结果表明:RVPSO改进算法的鲁棒性及全局搜索能力优于原算法,但在求解高维多峰函数时仍易于陷入局部最优;SAVPSO改进算法的全局搜索能力比RVPSO改进算法强,且在求解高维多峰函数时具有更快的收敛速度并能取得精度更高的解,表现出较好的全局优化能力,是一种切实有效的求解无约束优化问题的算法。 展开更多
关键词 无约束优化问题 约束优化问题 限制速度粒子优化 自适应速度粒子群优化
在线阅读 下载PDF
自适应混合粒子群优化DMC及其在脱硫系统中的应用
2
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
基于多群自适应协同粒子群优化算法的光储热泵系统研究
3
作者 刘鑫冉 吴振奎 +1 位作者 张腾飞 宋庚岭 《现代电子技术》 北大核心 2025年第10期127-134,共8页
为解决小型电热耦合系统的资源失配问题,并缓解北方地区供热压力和提高离网负荷供电的可靠性,通过整合光伏发电单元、蓄电池储能单元与高效水源热泵的供暖系统,将各部分看作不同子群,提出一种求解系统能量配比的最优解的多群自适应协同... 为解决小型电热耦合系统的资源失配问题,并缓解北方地区供热压力和提高离网负荷供电的可靠性,通过整合光伏发电单元、蓄电池储能单元与高效水源热泵的供暖系统,将各部分看作不同子群,提出一种求解系统能量配比的最优解的多群自适应协同粒子群优化算法。修正各子群的粒子惯性权重,通过多群协同机制避免求解过程陷入局部最优,并采用自适应性策略(ACS)来控制历史信息的影响,以提高子群的搜索效率和目标解的精度。实验结果表明:所提方法优化了光伏-储能-热泵系统的协同运行能力,避免了资源失配造成的能量浪费问题,且能够实现以清洁能源为热泵供电的目标,有效缓解北方地区冬季供热压力;该方法还将离网负荷供电可靠性提升至更高水平,兼具环境效益与工程应用潜力。 展开更多
关键词 热泵供暖系统 光伏发电 蓄电池储能 自适应多目标粒子算法 能量分配 系统优化
在线阅读 下载PDF
基于粒子群优化的BP神经网络PID的加速度计组件温控算法 被引量:1
4
作者 魏国 朱旭 +3 位作者 高春峰 侯承志 程嘉奕 陈迈伦 《中国惯性技术学报》 北大核心 2025年第4期359-366,共8页
在高精度惯性导航系统和惯性重力测量系统中,石英挠性加速度计的温变特性直接影响着系统的导航精度和重力测量系统精度,加速度的高精度信息测量对加速度计组件工作环境温度稳定性提出了更高要求。为进一步提高温控精度和抗扰动能力,提... 在高精度惯性导航系统和惯性重力测量系统中,石英挠性加速度计的温变特性直接影响着系统的导航精度和重力测量系统精度,加速度的高精度信息测量对加速度计组件工作环境温度稳定性提出了更高要求。为进一步提高温控精度和抗扰动能力,提出了基于PSO-BPNN-PID控制器,利用粒子群优化算法和反向传播算法对神经网络PID控制器进行离线和在线的连接权值整定,实现石英挠性加速度计组件一体化温度控制算法,满足加速度计组件的自适应智能控制需求。仿真和实验结果表明,所提算法能够显著提升系统的温度稳定性,可实现±0.002℃的温度稳定控制。同时,验证了系统具备快速响应温度变化的能力,能够在短时间内将温度调整至设定值附近,并有效抑制超调现象。此外,实验还模拟了外部扰动情况,验证了系统在面对扰动时能够迅速恢复稳定状态,表现出优越的抗扰动能力,可以满足多种温度环境下的加速度计组件高精度温控应用需求。 展开更多
关键词 石英挠性加速度 温度控制 粒子优化算法 BP神经网络
在线阅读 下载PDF
邻域自适应粒子群算法求解地源热泵区域能源系统鲁棒优化调度问题
5
作者 吴亮红 王维 +1 位作者 张红强 贾睿 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第6期1089-1100,共12页
针对地源热泵区域能源系统中冷热负荷和机组效能的不确定性,本文提出了一种考虑双重不确定性的鲁棒优化调度方法.首先,基于多面体不确定模型描述调度模型中的鲁棒变量.然后,针对建筑冷热负荷不确定性,采用对偶原理将双层优化模型等价为... 针对地源热泵区域能源系统中冷热负荷和机组效能的不确定性,本文提出了一种考虑双重不确定性的鲁棒优化调度方法.首先,基于多面体不确定模型描述调度模型中的鲁棒变量.然后,针对建筑冷热负荷不确定性,采用对偶原理将双层优化模型等价为单层优化模型;对于机组效能不确定性,采用场景法进行分析.最后,采用多目标优化约束处理方法处理鲁棒优化调度模型中的约束条件.同时,为更加高效、准确求解所构建的优化调度模型,提出了一种邻域自适应粒子群优化算法(NAPSO).实验结果表明,在制冷和制热工况下,与经验运行策略相比,本文所提方法可分别减少7.22%和5.55%的系统运行成本,是一种解决地源热泵区域能源系统鲁棒优化调度的有效方法. 展开更多
关键词 地源热泵 鲁棒优化调度 邻域自适应 粒子优化 不确定性
在线阅读 下载PDF
粒子群优化随机森林机床热误差建模与补偿
6
作者 苏哲 郭世杰 +3 位作者 丁强强 唐术锋 邹云鹤 吕贺 《机床与液压》 北大核心 2025年第12期8-16,共9页
为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策... 为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策略来避免粒子群算法陷入局部最优解,构建了基于APSO-RF的直线轴热误差预测模型。为了验证模型的准确性与实用性,在VDL-600A型加工中心上以X轴为例进行热误差测量与建模验证,基于FANUC系统坐标原点偏移(EMZPS)功能结合自主搭建的热误差辅助补偿系统,实现了计算机与系统间的通信连接。结果表明:APSO-RF热误差模型的均方根误差相比PSO-SVM、RF及BP模型分别降低了18.3%、45.2%及47.2%,有效提高了建模精度。根据构建的模型与补偿系统功能模块,补偿后热误差最大值由71.15μm降至13.4μm,精度提升81.2%,所构建的热误差补偿方法可有效提高机床的加工精度及稳定性。 展开更多
关键词 数控机床 热误差补偿 自适应粒子优化随机森林(APSO-RF)模型 浣熊优化算法(COA)
在线阅读 下载PDF
基于粒子群优化BP神经网络的核事故源项反演
7
作者 游清悦 曹博 +3 位作者 彭丁萍 李中昊 缪学伟 陈洲亮 《核电子学与探测技术》 北大核心 2025年第3期371-381,共11页
核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所... 核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所需的数据集。利用Matlab构建了粒子群算法(Particle Swarm Optimization,PSO)优化误差反向传播(Back Propagation,BP)神经网络的核事故源项反演模型,同时考虑了粒子群算法中超参数和适应度函数的不同对算法优化性能的影响。结果表明:PSOBP模型源项反演测试结果的平均绝对百分比误差为2.14%,平均绝对误差为0.011437,均方差为0.000685,各个评价指标明显优于BP神经网络,验证了该模型的可行性,有助于快速核应急响应。 展开更多
关键词 源项反演 BP神经网络 粒子优化 参数优化 适应度函数
在线阅读 下载PDF
基于改进粒子群优化算法的船舶避碰研究 被引量:1
8
作者 朱凯鹏 王全政 +3 位作者 杨文政 于庆州 王泽凡 王晓原 《传感器与微系统》 北大核心 2025年第4期40-43,47,共5页
随着海上贸易的日益增长,海洋运输已逐渐成为世界各国运输和贸易发展的重要环节,如何避免船舶碰撞已成为海上贸易中的一个重要问题。针对海上船舶避碰问题,本文提出了一种改进粒子群优化(IPSO)算法,该算法根据当前粒子目标函数的平均值... 随着海上贸易的日益增长,海洋运输已逐渐成为世界各国运输和贸易发展的重要环节,如何避免船舶碰撞已成为海上贸易中的一个重要问题。针对海上船舶避碰问题,本文提出了一种改进粒子群优化(IPSO)算法,该算法根据当前粒子目标函数的平均值动态调整惯性权值,另外考虑到船舶操纵的安全性,改进了适应度函数,并结合IPSO算法,对函数进行求解。通过MATLAB仿真结果表明,与传统的PSO算法相比,IPSO算法的收敛速度提高了37.5%,搜索效率得到显著增强。 展开更多
关键词 船舶避碰 改进粒子优化算法 自适应惯性权值 避碰决策
在线阅读 下载PDF
自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用 被引量:2
9
作者 程金芮 金瑾 +3 位作者 张朝龙 孔超 何嘉 张鑫 《计算机应用》 CSCD 北大核心 2024年第S01期60-64,共5页
针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与... 针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与局部信息的协同作用和智能切换学习策略。具体地,ARCLPSO利用全局和局部信息的协同作用令粒子向更优的方向移动,通过智能的切换粒子学习策略平衡粒子的搜索性能和收敛速度,提高搜索速度和搜索质量。在NAS-Bench-101数据集上的实验结果表明,ARCLPSO的收敛时间相较于传统进化算法(REA)和随机搜索(RS),分别减少了40.9%和55.2%。 展开更多
关键词 神经网络架构搜索 粒子优化 进化算法 NAS-Bench-101 自适应的协作学习算法
在线阅读 下载PDF
基于自适应粒子群优化算法的串联复合涡轮储能优化策略 被引量:2
10
作者 王震 张珊珊 +1 位作者 邬斌扬 苏万华 《计算机应用》 CSCD 北大核心 2024年第2期611-618,共8页
针对发动机串联复合涡轮发电系统储能困难等问题,提出了一种基于自适应粒子群优化(SAPSO)算法的最大功率点追踪(MPPT)方法,增强发电系统功率的捕获能力。此外,采用混合储能系统(HESS)替代单一蓄电池储能,实现电能的高效、稳定存储。通过... 针对发动机串联复合涡轮发电系统储能困难等问题,提出了一种基于自适应粒子群优化(SAPSO)算法的最大功率点追踪(MPPT)方法,增强发电系统功率的捕获能力。此外,采用混合储能系统(HESS)替代单一蓄电池储能,实现电能的高效、稳定存储。通过Matlab/Simulink软件,建立了基于发动机串联复合涡轮发电的储能优化控制仿真模型,对比分析了不同控制方法在设定工况下的功率追踪性能以及混合储能系统的储能特性。仿真结果表明,相较于传统扰动观测法(P&O)控制方法,在所提的SAPSO-MPPT方法下,发电功率提高了190 W,响应时间缩短了0.15 s。同时,HESS能够有效追踪母线上的需求功率,电能回收效率高达95.3%。最后,基于Y24型改装发动机台架搭建了串联复合涡轮发电系统实验平台,对所提储能优化控制策略的节油潜力进行了实验验证。结果表明,SAPSO-MPPT+HESS储能优化策略能够有效提高排气能量回收效率,优化后系统总热效率比原发动机提高了提高0.53个百分点。 展开更多
关键词 自适应粒子优化算法 串联复合涡轮发电系统 最大功率点追踪 混合储能系统
在线阅读 下载PDF
基于峰值导向型粒子群优化算法的城市水文模型自动率定方法
11
作者 许王辰 陈瑞弘 孙岸炜 《水利水电科技进展》 北大核心 2025年第4期31-38,共8页
针对城市多参数水文模型中径流及峰现时间人工率定效率低、精度不足的问题,提出一种基于改进粒子群优化(PSO)算法的模型参数自动率定方法。该方法在PSO算法中引入Logistic映射和莱维飞行,分别用于粒子初始化和位置更新,以避免陷入局部最... 针对城市多参数水文模型中径流及峰现时间人工率定效率低、精度不足的问题,提出一种基于改进粒子群优化(PSO)算法的模型参数自动率定方法。该方法在PSO算法中引入Logistic映射和莱维飞行,分别用于粒子初始化和位置更新,以避免陷入局部最优;同时结合城市产汇流模型特征,构建包含整体拟合、峰值及峰现时间的加权多目标适应度函数,以提高模型对关键水文特征的捕捉能力。通过Python实现该方法与机理模型(雨洪管理模型,SWMM)的交互,并利用试验场实测数据对10个关键水文参数进行率定,比较不同权重取值的适应度函数的拟合效果。结果表明,构建的加权多目标适应度函数在城市排水系统应急调度应用中更具优势,尤其在提高峰值与峰现时间模拟精度方面表现更优。将该方法应用于九江实际排水系统,峰值误差和峰现时间误差分别为0.56%和-6.82%,验证了方法的可行性与准确性。 展开更多
关键词 城市水文模型 多目标适应度函数 粒子优化算法 自动率定 SWMM
在线阅读 下载PDF
改进粒子群算法的径向柱塞液压马达内曲线优化
12
作者 李佳璇 康绍鹏 +4 位作者 杨静 刘凯磊 强红宾 柯贤胜 崔毅 《现代制造工程》 北大核心 2025年第2期69-75,共7页
径向柱塞液压马达在中大型机械装备中应用十分广泛,然而因其内部存在冲击与疲劳磨损等问题,对径向柱塞液压马达的寿命与性能造成了一定的影响。针对上述问题,提出了一种改进粒子群算法优化径向柱塞液压马达内曲线的方法,该方法将等加速... 径向柱塞液压马达在中大型机械装备中应用十分广泛,然而因其内部存在冲击与疲劳磨损等问题,对径向柱塞液压马达的寿命与性能造成了一定的影响。针对上述问题,提出了一种改进粒子群算法优化径向柱塞液压马达内曲线的方法,该方法将等加速度曲线重构为含补偿区的等加速度曲线,以减小冲击和接触应力突变值。以粒子群算法(Particle Swarm Optimization,PSO)为基础,加入自适应非线性动态权重与多子种群竞争优化策略,构建一种改进粒子群算法,对各区段角度进行重新分配,重新生成含补偿区的径向柱塞液压马达内曲线。对比优化前后的结果表明,最大接触应力下降了2.54%,最大接触应力处的突变值下降至0;接触应力不再阶跃式上升,有上升过程,冲击较小。该研究能够为径向柱塞液压马达的设计提供参考,有效减缓疲劳与磨损,降低冲击影响,从而延长液压马达的使用寿命。 展开更多
关键词 径向柱塞液压马达 内曲线 自适应非线性动态权重 多子种竞争优化策略 改进粒子算法
在线阅读 下载PDF
自适应粒子群算法汽车传动系统参数优化匹配 被引量:1
13
作者 吴素珍 郑群雄 毕建平 《机械设计与制造》 北大核心 2024年第12期51-55,共5页
为提高汽车的动力性,降低汽车的燃油消耗,提出一种传动系统参数多目标优化匹配方法。基于机械式传动系统,分别以百公里燃油消耗量和(0~100)km/h加速时间为优化分目标,构建整车动力性模型和经济性模型;通过设定不同的动力性约束指标,引... 为提高汽车的动力性,降低汽车的燃油消耗,提出一种传动系统参数多目标优化匹配方法。基于机械式传动系统,分别以百公里燃油消耗量和(0~100)km/h加速时间为优化分目标,构建整车动力性模型和经济性模型;通过设定不同的动力性约束指标,引入加权系数法和罚函数,建立了多工况下整车传动系统的参数优化模型。为提高传动系参数的匹配程度,提出一种基于动态学习因子和自适应调节惯性权重策略下的改进自适应粒子群优化算法,获得整车传动系统参数的最优集。仿真结果表明,改进后的算法收敛速度快,更具“活”性,很好地避免了算法的“早熟收敛”,较传统的自适应算法而言,在六循环工况下的百公里油耗减少了1.5%,(0~100)km/h加速时间缩短了2.3%,最高车速也提高了0.53%,这些结果都充分验证了改进的自适应粒子群算法的可靠性和有效性。 展开更多
关键词 传动系参数 自适应粒子算法 仿真 参数优化匹配
在线阅读 下载PDF
基于自适应混沌粒子群优化算法的多目标无功优化 被引量:79
14
作者 李娟 杨琳 +2 位作者 刘金龙 杨德龙 张晨 《电力系统保护与控制》 EI CSCD 北大核心 2011年第9期26-31,共6页
针对粒子群无功优化中由于随机生成代表控制变量值的粒子,使得在优化迭代过程中易陷入局部最优解,而且后期收敛速度慢等问题,将混沌优化算法融合到粒子群算法中,提出了混沌粒子群算法求解多目标无功优化问题。该算法在初始化粒子即无功... 针对粒子群无功优化中由于随机生成代表控制变量值的粒子,使得在优化迭代过程中易陷入局部最优解,而且后期收敛速度慢等问题,将混沌优化算法融合到粒子群算法中,提出了混沌粒子群算法求解多目标无功优化问题。该算法在初始化粒子即无功优化控制变量值时,采用混沌思想,增加控制变量取值的多样性;通过粒子群无功优化算法计算各个粒子对应的适应值即无功优化目标函数值,并按照其大小择优选取控制变量值进行混沌优化以帮助无功优化控制变量跳出局部极值区域;并根据无功优化目标函数值自适应地调整其惯性权重系数以提高全局与局部搜索能力。通过算例分析表明,采用自适应混沌粒子群算法进行无功优化,能够及时跳出局部最优得到全局最优解,且收敛速度快。 展开更多
关键词 自适应 混沌粒子优化算法 无功优化 惯性权重
在线阅读 下载PDF
基于自适应网格的多目标粒子群优化算法 被引量:30
15
作者 杨俊杰 周建中 +2 位作者 方仍存 李英海 刘力 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第21期5843-5847,共5页
针对现有多目标进化算法计算复杂度高、搜索效率低等缺点,提出了基于自适应网格的多目标粒子群优化(AGA-MOPSO)算法,其特点包括:评估非劣解集中粒子密度估计信息的自适应网格算法;能够平衡全局和局部搜索能力的基于AGA的Pareto最优解搜... 针对现有多目标进化算法计算复杂度高、搜索效率低等缺点,提出了基于自适应网格的多目标粒子群优化(AGA-MOPSO)算法,其特点包括:评估非劣解集中粒子密度估计信息的自适应网格算法;能够平衡全局和局部搜索能力的基于AGA的Pareto最优解搜索技术;删除非劣解集集中品质差的多余粒子以维持非劣解集在一定规模的基于AGA的非劣解集截断技术。仿真计算表明,和文献中典型的多目标进化算法比较,AGA-MOPSO算法在求解复杂大规模优化问题方面表现了良好的性能。 展开更多
关键词 多目标 优化 粒子优化 自适应网格算法
在线阅读 下载PDF
多目标无功优化的向量评价自适应粒子群算法 被引量:81
16
作者 刘佳 李丹 +1 位作者 高立群 宋立新 《中国电机工程学报》 EI CSCD 北大核心 2008年第31期22-28,共7页
为了克服粒子群算法在高维复杂问题寻优时有相当可能陷入局部寻优的现象,提出了一种自适应粒子群算法。该算法利用种群多样性信息对惯性权重进行非线性的调整,并在算法的后期引入速度变异算子和位置交叉算子,使算法摆脱后期易于陷入局... 为了克服粒子群算法在高维复杂问题寻优时有相当可能陷入局部寻优的现象,提出了一种自适应粒子群算法。该算法利用种群多样性信息对惯性权重进行非线性的调整,并在算法的后期引入速度变异算子和位置交叉算子,使算法摆脱后期易于陷入局部最优点的束缚。对基于向量评价的粒子群算法进行了扩展,提出了基于向量评价的自适应粒子群算法(vector evaluated adaptive particle swarm optimization,VEAPSO)来解决多目标无功优化问题,求解出问题的Pareto最优解集。为帮助决策者从Pareto最优解集中选取合适的最优解,该文提出一种基于决策者偏好及投影寻踪模型的多属性决策法,使决策结果更加真实可靠。将该算法应用于多目标无功优化问题中,IEEE30和IEEE118节点系统算例仿真表明该方法用于解决多目标无功优化问题是有效可行的。 展开更多
关键词 自适应 粒子算法 向量评价 多目标 无功优化 投影寻踪
在线阅读 下载PDF
基于自适应变异粒子群算法的电动汽车换电池站充电调度多目标优化 被引量:65
17
作者 田文奇 和敬涵 +2 位作者 姜久春 牛利勇 王小君 《电网技术》 EI CSCD 北大核心 2012年第11期25-29,共5页
大规模电动汽车用户的无序充电行为会对电网造成"峰上加峰"等影响,因此电动汽车规模化应用迫切要求实现对充电行为的引导和调度。电动汽车换电站具有受可调度时间约束影响小等特点,与个体电动汽车相比较易实现充电调度。根据... 大规模电动汽车用户的无序充电行为会对电网造成"峰上加峰"等影响,因此电动汽车规模化应用迫切要求实现对充电行为的引导和调度。电动汽车换电站具有受可调度时间约束影响小等特点,与个体电动汽车相比较易实现充电调度。根据换电站的特点以换电站各时刻的充电功率为控制对象,建立多目标的调度策略数学模型,并采用自适应变异的粒子群算法求解以减小标准粒子群容易早熟对优化结果的影响,得到次日优化充电计划。基于某地区负荷曲线进行算例仿真,验证了算法的有效性,比较了单目标优化和多目标优化的调度策略对负荷曲线的影响。结果表明,换电站充电调度策略采用多目标优化时能够克服单目标优化填充"最低谷"效果差的问题,有效地降低电网峰谷差,达到平稳负荷波动的效果。 展开更多
关键词 电动汽车 换电池站 充电调度 多目标优化 自适应变异的粒子优化算法
在线阅读 下载PDF
基于反馈策略的自适应粒子群优化算法 被引量:29
18
作者 俞欢军 张丽平 +1 位作者 陈德钊 胡上序 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第9期1286-1291,共6页
为了克服常规粒子群优化(SPSO)算法在多峰函数寻优应用中容易出现早熟的缺点,提出了一种基于反馈策略的自适应粒子群优化(APSO)算法.考虑到进化过程中群体多样性损失过快,采用种群分布熵和平均粒距两个种群多样性参数,来均衡算法的勘探... 为了克服常规粒子群优化(SPSO)算法在多峰函数寻优应用中容易出现早熟的缺点,提出了一种基于反馈策略的自适应粒子群优化(APSO)算法.考虑到进化过程中群体多样性损失过快,采用种群分布熵和平均粒距两个种群多样性参数,来均衡算法的勘探和开发能力.基于惯性权值随种群多样性变化而变化的动态分析,建立了惯性权值与平均粒距之间的线性函数关系,并将该函数关系融入到APSO算法中.测试结果表明,与常规粒子群优化算法相比,该算法在多峰雨数寻优时,成功率和精确度都有显著提高,且全局收敛速度快;在求解异或(XOR)分类问题时成功概率提高,收敛速度加快,APSO算法对神经网络的训练更加有效. 展开更多
关键词 早熟 自适应算法 粒子优化
在线阅读 下载PDF
粒子群优化小波自适应阈值法用于局部放电去噪 被引量:31
19
作者 江天炎 李剑 +2 位作者 杜林 王有元 杨丽君 《电工技术学报》 EI CSCD 北大核心 2012年第5期77-83,共7页
为了提高局部放电在线监测中小波去噪的自适应能力,并降低去噪信号的畸变率,提出了一种用于电力设备局部放电信号去噪的粒子群优化小波自适应阈值方法。该方法采用小波对局部放电信号进行分解,在阈值选择时采用基于SURE无偏估计的最优... 为了提高局部放电在线监测中小波去噪的自适应能力,并降低去噪信号的畸变率,提出了一种用于电力设备局部放电信号去噪的粒子群优化小波自适应阈值方法。该方法采用小波对局部放电信号进行分解,在阈值选择时采用基于SURE无偏估计的最优阈值自适应选择方法,结合粒子群优化算法进行全局自适应搜索最优阈值,使最优阈值自适应寻优速度大大提高。为了验证其去噪效果,还引入遗传算法对小波自适应阈值法进行优化计算。对局部放电仿真信号与实测局部放电信号的去噪结果表明,本文与标准软阈值法和遗传算法优化小波自适应阈值法相比,能更好地去除局部放电信号中的白噪声,计算速度更快,具有良好的去噪效果和应用价值。 展开更多
关键词 局部放电 在线监测 小波去噪 自适应阈值 粒子优化算法
在线阅读 下载PDF
一种自适应粒子群优化算法及其仿真研究 被引量:124
20
作者 韩江洪 李正荣 魏振春 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第10期2969-2971,共3页
分析了粒子群优化(PSO)算法易于发生早熟收敛的原因。在此基础上提出的自适应粒子群优化(APSO)算法根据群体早熟收敛程度和个体适应值自适应地调整粒子的惯性权重,使群体在进化过程中始终保持惯性权重的多样性,在算法的全局收敛性和收... 分析了粒子群优化(PSO)算法易于发生早熟收敛的原因。在此基础上提出的自适应粒子群优化(APSO)算法根据群体早熟收敛程度和个体适应值自适应地调整粒子的惯性权重,使群体在进化过程中始终保持惯性权重的多样性,在算法的全局收敛性和收敛速度之间做了一个很好的折衷。对两个经典函数仿真的结果表明APSO算法能够有效地避免PSO算法的早熟收敛问题,而且具有较快的收敛速度。 展开更多
关键词 粒子优化 早熟收敛 惯性权重 自适应参数调整
在线阅读 下载PDF
上一页 1 2 41 下一页 到第
使用帮助 返回顶部