期刊文献+
共找到857篇文章
< 1 2 43 >
每页显示 20 50 100
基于多群自适应协同粒子群优化算法的光储热泵系统研究
1
作者 刘鑫冉 吴振奎 +1 位作者 张腾飞 宋庚岭 《现代电子技术》 北大核心 2025年第10期127-134,共8页
为解决小型电热耦合系统的资源失配问题,并缓解北方地区供热压力和提高离网负荷供电的可靠性,通过整合光伏发电单元、蓄电池储能单元与高效水源热泵的供暖系统,将各部分看作不同子群,提出一种求解系统能量配比的最优解的多群自适应协同... 为解决小型电热耦合系统的资源失配问题,并缓解北方地区供热压力和提高离网负荷供电的可靠性,通过整合光伏发电单元、蓄电池储能单元与高效水源热泵的供暖系统,将各部分看作不同子群,提出一种求解系统能量配比的最优解的多群自适应协同粒子群优化算法。修正各子群的粒子惯性权重,通过多群协同机制避免求解过程陷入局部最优,并采用自适应性策略(ACS)来控制历史信息的影响,以提高子群的搜索效率和目标解的精度。实验结果表明:所提方法优化了光伏-储能-热泵系统的协同运行能力,避免了资源失配造成的能量浪费问题,且能够实现以清洁能源为热泵供电的目标,有效缓解北方地区冬季供热压力;该方法还将离网负荷供电可靠性提升至更高水平,兼具环境效益与工程应用潜力。 展开更多
关键词 热泵供暖系统 光伏发电 蓄电池储能 自适应多目标粒子算法 能量分配 系统优化
在线阅读 下载PDF
自适应混合粒子群优化DMC及其在脱硫系统中的应用
2
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
自适应免疫粒子群算法在光伏MPPT中的应用 被引量:3
3
作者 李练兵 王兰超 +2 位作者 朱乐 韩琪琪 杨少波 《电源技术》 CAS 北大核心 2024年第4期749-754,共6页
光伏阵列在局部遮阴条件下,其P-U特性曲线呈多峰特性,传统的最大功率点跟踪(MPPT)算法容易陷入局部最优,而无法追踪到最大功率点。粒子群(PSO)算法适用于复杂多极值的寻优问题,因而在多峰值MPPT中得到广泛应用。针对粒子群算法寻优过程... 光伏阵列在局部遮阴条件下,其P-U特性曲线呈多峰特性,传统的最大功率点跟踪(MPPT)算法容易陷入局部最优,而无法追踪到最大功率点。粒子群(PSO)算法适用于复杂多极值的寻优问题,因而在多峰值MPPT中得到广泛应用。针对粒子群算法寻优过程中易早熟收敛至局部最优、迭代后期收敛速度慢以及精度低等问题,提出了一种自适应免疫粒子群算法。该算法对惯性权重和学习因子进行自适应调整,并且与免疫算法相结合。仿真结果表明:该算法在静态局部遮阴以及动态局部遮阴条件下,均能追踪到最大功率点,并且收敛速度更快,精度更高,稳定性更好。 展开更多
关键词 光伏电池 局部遮阴 MPPT 自适应免疫粒子算法
在线阅读 下载PDF
机械臂自抗扰控制的自适应-重构粒子群优化 被引量:1
4
作者 郑伦川 梁新元 袁乖宁 《机械设计与制造》 北大核心 2025年第2期231-235,共5页
为了减小机械臂在扰动作用下的控制误差,提出了基于自适应-重构粒子群算法的机械臂自抗扰控制优化方法。介绍了自抗扰控制器的组成和工作原理,依据ITAE指标建立了自抗扰控制参数的优化模型。对粒子群算法的粒子进化能力和算法进化能力... 为了减小机械臂在扰动作用下的控制误差,提出了基于自适应-重构粒子群算法的机械臂自抗扰控制优化方法。介绍了自抗扰控制器的组成和工作原理,依据ITAE指标建立了自抗扰控制参数的优化模型。对粒子群算法的粒子进化能力和算法进化能力进行了定义,基于两种进化能力构造了自适应学习因子,使粒子能够自适应选择高效率学习对象;引入了粒子随机重构策略,使算法具备跳出局部最优的能力,将新型算法命名为自适应-重构粒子群算法。经过仿真测试和验证,自适应-重构粒子群算法的优化能力强于标准算法;在时变扰动和恒值扰动作用下,自适应-重构粒子群算法优化的机械臂控制误差远小于标准粒子群算法。仿真结果验证了自适应-重构粒子群算法在机械臂自抗扰控制优化中的优越性。 展开更多
关键词 机械臂 自抗扰控制 自适应学习因子 粒子重构策略 粒子算法
在线阅读 下载PDF
基于离散粒子群算法的集群无人机飞行路径规划
5
作者 广鑫 耿增显 《现代电子技术》 北大核心 2025年第4期119-122,共4页
飞行环境可能随时发生变化,如新的障碍物出现、天气条件变化等,导致集群无人机飞行路径规划难度上升。为此,提出一种基于离散粒子群算法的集群无人机飞行路径规划方法。根据人工势场理论与威胁类型绘制Voronoi图,从而确定Voronoi图弧权... 飞行环境可能随时发生变化,如新的障碍物出现、天气条件变化等,导致集群无人机飞行路径规划难度上升。为此,提出一种基于离散粒子群算法的集群无人机飞行路径规划方法。根据人工势场理论与威胁类型绘制Voronoi图,从而确定Voronoi图弧权值。结合Voronoi图弧权值计算结果与无人机飞行航程、威胁、电池效能代价构建适应度函数,通过离散粒子群算法不断进行迭代寻优,得到集群无人机的最佳飞行路径。实验结果表明,所提方法在集群无人机路径规划中具有较高的执行效率和成功率,具有良好的实际应用前景。 展开更多
关键词 离散粒子算法 无人机 路径规划 人工势场 VORONOI图 适应度函数
在线阅读 下载PDF
基于改进粒子群优化算法的船舶避碰研究 被引量:1
6
作者 朱凯鹏 王全政 +3 位作者 杨文政 于庆州 王泽凡 王晓原 《传感器与微系统》 北大核心 2025年第4期40-43,47,共5页
随着海上贸易的日益增长,海洋运输已逐渐成为世界各国运输和贸易发展的重要环节,如何避免船舶碰撞已成为海上贸易中的一个重要问题。针对海上船舶避碰问题,本文提出了一种改进粒子群优化(IPSO)算法,该算法根据当前粒子目标函数的平均值... 随着海上贸易的日益增长,海洋运输已逐渐成为世界各国运输和贸易发展的重要环节,如何避免船舶碰撞已成为海上贸易中的一个重要问题。针对海上船舶避碰问题,本文提出了一种改进粒子群优化(IPSO)算法,该算法根据当前粒子目标函数的平均值动态调整惯性权值,另外考虑到船舶操纵的安全性,改进了适应度函数,并结合IPSO算法,对函数进行求解。通过MATLAB仿真结果表明,与传统的PSO算法相比,IPSO算法的收敛速度提高了37.5%,搜索效率得到显著增强。 展开更多
关键词 船舶避碰 改进粒子优化算法 自适应惯性权值 避碰决策
在线阅读 下载PDF
基于改进分数阶粒子群算法的多无人车取送货任务调度方法
7
作者 陈玉全 冯丽曼 +2 位作者 孙克璇 张楠杰 王冰 《农业机械学报》 北大核心 2025年第6期109-118,共10页
针对农产品运输场景下产地与销地配送环节中的多无人车协同任务分配问题,首先构建涵盖行程成本、时间违反成本、负载违反成本和启动成本的多无人车取送货任务调度组合优化模型。提出一种改进分数阶粒子群算法(Improved fractional order... 针对农产品运输场景下产地与销地配送环节中的多无人车协同任务分配问题,首先构建涵盖行程成本、时间违反成本、负载违反成本和启动成本的多无人车取送货任务调度组合优化模型。提出一种改进分数阶粒子群算法(Improved fractional order particle swarm optimization,IFOPSO)。通过在粒子群算法(PSO)中引入分数阶列维随机步长,提高PSO的全局搜索能力,进一步设计列维阶次的自适应调整机制,提高IFOPSO的收敛精度和寻优性能。基于10个基准函数的对比实验结果表明,提出的IFOPSO算法在收敛速度、精度以及全局搜索能力等方面,相较于现有算法表现出显著优势。最后将IFOPSO算法应用于多无人车任务分配问题的求解中,并与传统PSO、改进PSO和分数阶PSO算法进行对比实验,结果表明该算法能够有效降低调度成本,并快速找到合理的取送货方案。 展开更多
关键词 农产品运输 任务分配 多车协同 分数阶粒子算法 列维随机步长 自适应列维阶次
在线阅读 下载PDF
自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用 被引量:2
8
作者 程金芮 金瑾 +3 位作者 张朝龙 孔超 何嘉 张鑫 《计算机应用》 CSCD 北大核心 2024年第S01期60-64,共5页
针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与... 针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与局部信息的协同作用和智能切换学习策略。具体地,ARCLPSO利用全局和局部信息的协同作用令粒子向更优的方向移动,通过智能的切换粒子学习策略平衡粒子的搜索性能和收敛速度,提高搜索速度和搜索质量。在NAS-Bench-101数据集上的实验结果表明,ARCLPSO的收敛时间相较于传统进化算法(REA)和随机搜索(RS),分别减少了40.9%和55.2%。 展开更多
关键词 神经网络架构搜索 粒子优化 进化算法 NAS-Bench-101 自适应的协作学习算法
在线阅读 下载PDF
基于自适应粒子群优化算法的串联复合涡轮储能优化策略 被引量:2
9
作者 王震 张珊珊 +1 位作者 邬斌扬 苏万华 《计算机应用》 CSCD 北大核心 2024年第2期611-618,共8页
针对发动机串联复合涡轮发电系统储能困难等问题,提出了一种基于自适应粒子群优化(SAPSO)算法的最大功率点追踪(MPPT)方法,增强发电系统功率的捕获能力。此外,采用混合储能系统(HESS)替代单一蓄电池储能,实现电能的高效、稳定存储。通过... 针对发动机串联复合涡轮发电系统储能困难等问题,提出了一种基于自适应粒子群优化(SAPSO)算法的最大功率点追踪(MPPT)方法,增强发电系统功率的捕获能力。此外,采用混合储能系统(HESS)替代单一蓄电池储能,实现电能的高效、稳定存储。通过Matlab/Simulink软件,建立了基于发动机串联复合涡轮发电的储能优化控制仿真模型,对比分析了不同控制方法在设定工况下的功率追踪性能以及混合储能系统的储能特性。仿真结果表明,相较于传统扰动观测法(P&O)控制方法,在所提的SAPSO-MPPT方法下,发电功率提高了190 W,响应时间缩短了0.15 s。同时,HESS能够有效追踪母线上的需求功率,电能回收效率高达95.3%。最后,基于Y24型改装发动机台架搭建了串联复合涡轮发电系统实验平台,对所提储能优化控制策略的节油潜力进行了实验验证。结果表明,SAPSO-MPPT+HESS储能优化策略能够有效提高排气能量回收效率,优化后系统总热效率比原发动机提高了提高0.53个百分点。 展开更多
关键词 自适应粒子优化算法 串联复合涡轮发电系统 最大功率点追踪 混合储能系统
在线阅读 下载PDF
基于峰值导向型粒子群优化算法的城市水文模型自动率定方法
10
作者 许王辰 陈瑞弘 孙岸炜 《水利水电科技进展》 北大核心 2025年第4期31-38,共8页
针对城市多参数水文模型中径流及峰现时间人工率定效率低、精度不足的问题,提出一种基于改进粒子群优化(PSO)算法的模型参数自动率定方法。该方法在PSO算法中引入Logistic映射和莱维飞行,分别用于粒子初始化和位置更新,以避免陷入局部最... 针对城市多参数水文模型中径流及峰现时间人工率定效率低、精度不足的问题,提出一种基于改进粒子群优化(PSO)算法的模型参数自动率定方法。该方法在PSO算法中引入Logistic映射和莱维飞行,分别用于粒子初始化和位置更新,以避免陷入局部最优;同时结合城市产汇流模型特征,构建包含整体拟合、峰值及峰现时间的加权多目标适应度函数,以提高模型对关键水文特征的捕捉能力。通过Python实现该方法与机理模型(雨洪管理模型,SWMM)的交互,并利用试验场实测数据对10个关键水文参数进行率定,比较不同权重取值的适应度函数的拟合效果。结果表明,构建的加权多目标适应度函数在城市排水系统应急调度应用中更具优势,尤其在提高峰值与峰现时间模拟精度方面表现更优。将该方法应用于九江实际排水系统,峰值误差和峰现时间误差分别为0.56%和-6.82%,验证了方法的可行性与准确性。 展开更多
关键词 城市水文模型 多目标适应度函数 粒子优化算法 自动率定 SWMM
在线阅读 下载PDF
改进粒子群算法的径向柱塞液压马达内曲线优化
11
作者 李佳璇 康绍鹏 +4 位作者 杨静 刘凯磊 强红宾 柯贤胜 崔毅 《现代制造工程》 北大核心 2025年第2期69-75,共7页
径向柱塞液压马达在中大型机械装备中应用十分广泛,然而因其内部存在冲击与疲劳磨损等问题,对径向柱塞液压马达的寿命与性能造成了一定的影响。针对上述问题,提出了一种改进粒子群算法优化径向柱塞液压马达内曲线的方法,该方法将等加速... 径向柱塞液压马达在中大型机械装备中应用十分广泛,然而因其内部存在冲击与疲劳磨损等问题,对径向柱塞液压马达的寿命与性能造成了一定的影响。针对上述问题,提出了一种改进粒子群算法优化径向柱塞液压马达内曲线的方法,该方法将等加速度曲线重构为含补偿区的等加速度曲线,以减小冲击和接触应力突变值。以粒子群算法(Particle Swarm Optimization,PSO)为基础,加入自适应非线性动态权重与多子种群竞争优化策略,构建一种改进粒子群算法,对各区段角度进行重新分配,重新生成含补偿区的径向柱塞液压马达内曲线。对比优化前后的结果表明,最大接触应力下降了2.54%,最大接触应力处的突变值下降至0;接触应力不再阶跃式上升,有上升过程,冲击较小。该研究能够为径向柱塞液压马达的设计提供参考,有效减缓疲劳与磨损,降低冲击影响,从而延长液压马达的使用寿命。 展开更多
关键词 径向柱塞液压马达 内曲线 自适应非线性动态权重 多子种竞争优化策略 改进粒子算法
在线阅读 下载PDF
基于改进粒子群算法的阻尼惯量自适应控制策略 被引量:4
12
作者 卢盛阳 朱钰 +3 位作者 陈涛 王同 王宁 吴蒙 《电力系统及其自动化学报》 CSCD 北大核心 2024年第4期68-75,共8页
针对传统虚拟同步发电机控制策略存在暂态调节时间长及稳定性差等问题,提出一种基于改进粒子群算法的阻尼惯量自适应控制策略。首先,通过分析系统受扰动后功角特性,提出阻尼惯量自适应控制策略;然后,利用改进粒子群算法选择控制策略初始... 针对传统虚拟同步发电机控制策略存在暂态调节时间长及稳定性差等问题,提出一种基于改进粒子群算法的阻尼惯量自适应控制策略。首先,通过分析系统受扰动后功角特性,提出阻尼惯量自适应控制策略;然后,利用改进粒子群算法选择控制策略初始值,给出关键参数的选取原则及具体范围;最后,通过与现有控制策略进行对比,分析不同惯量及阻尼下对系统影响并验证控制策略的优越性。结果表明,该策略可有效提高系统稳定性及动态响应性能。 展开更多
关键词 虚拟同步发电机 虚拟惯量 阻尼系数 自适应控制 粒子优化算法
在线阅读 下载PDF
基于改进粒子群算法的自适应构网型变流器控制策略 被引量:6
13
作者 段玉 朱子民 +3 位作者 王小云 陈杰 马健 南东亮 《广东电力》 北大核心 2024年第2期10-17,共8页
构网型控制是一种改善新能源高渗透率下电力系统稳定性问题的技术手段。针对传统构网型变流器均采用固定参数控制而未能发挥出最佳调频效果这一问题,基于构网型变流器控制参数可调的特点,提出一种自适应控制策略,以优化构网型变流器的... 构网型控制是一种改善新能源高渗透率下电力系统稳定性问题的技术手段。针对传统构网型变流器均采用固定参数控制而未能发挥出最佳调频效果这一问题,基于构网型变流器控制参数可调的特点,提出一种自适应控制策略,以优化构网型变流器的输出并改善电力系统的动态特性。首先,通过仿真实验得到典型构网型变流器虚拟惯量和阻尼系数在大功率事件下对系统动态特性的影响;其次,研究典型构网型变流器的频率曲线与功角曲线,提出包含频率偏差和频率变化率的自适应构网型变流器控制策略;然后,通过改进粒子群算法对自适应控制策略涉及参数进行整定;最后,基于MATLAB/Simulink搭建的微电网模型,验证所提控制策略的稳定性与鲁棒性。仿真结果表明,所提控制策略可以自适应改变控制参数,使构网型变流器的输出能够满足系统各个阶段的不同需求,优化电力系统的动态特性。 展开更多
关键词 构网型变流器 自适应控制 改进粒子算法 参数整定 电力系统稳定
在线阅读 下载PDF
具有快速收敛和自适应逃逸功能的粒子群优化算法 被引量:14
14
作者 史小露 孙辉 +1 位作者 李俊 朱德刚 《计算机应用》 CSCD 北大核心 2013年第5期1308-1312,共5页
为了克服标准粒子群优化算法(PSO)后期收敛速度慢、容易陷入局部最优等缺点,借鉴人工蜂群算法的思想,提出了一种提高收敛速度并且带有自适应逃逸功能的粒子群优化算法(FAPSO)。算法中每进化一次粒子搜索两次:一次全局搜索,一次局部搜索... 为了克服标准粒子群优化算法(PSO)后期收敛速度慢、容易陷入局部最优等缺点,借鉴人工蜂群算法的思想,提出了一种提高收敛速度并且带有自适应逃逸功能的粒子群优化算法(FAPSO)。算法中每进化一次粒子搜索两次:一次全局搜索,一次局部搜索。当粒子陷入局部最优时,通过逃逸功能使粒子重新搜索。8个经典基准测试函数仿真结果表明,改进的粒子群优化算法在收敛速度和寻优精度上均有提高,相对于目前常用的改进粒子群优化算法如CLPSO等,t检验结果说明,新算法具有明显的优势。 展开更多
关键词 粒子优化算法 全局搜索 局部搜索 快速收敛 自适应逃逸
在线阅读 下载PDF
具有反向学习和自适应逃逸功能的粒子群优化算法 被引量:7
15
作者 吕莉 赵嘉 孙辉 《计算机应用》 CSCD 北大核心 2015年第5期1336-1341,共6页
为克服粒子群优化算法进化后期收敛速度慢、易陷入局部最优等缺点,提出一种具有反向学习和自适应逃逸功能的粒子群优化算法。通过设定的阈值,算法将种群进化状态划分为正常状态和"早熟"状态:若算法处于正常的进化状态,采用标... 为克服粒子群优化算法进化后期收敛速度慢、易陷入局部最优等缺点,提出一种具有反向学习和自适应逃逸功能的粒子群优化算法。通过设定的阈值,算法将种群进化状态划分为正常状态和"早熟"状态:若算法处于正常的进化状态,采用标准粒子群优化算法的进化模式;当粒子陷入"早熟"状态,运用反向学习和自适应逃逸功能,对个体最优位置进行反向学习,产生粒子的反向解,增加粒子的反向学习能力,增强算法逃离局部最优的能力,提高算法寻优率。在固定评估次数的情况下,对8个基准测试函数进行仿真,实验结果表明:所提算法在收敛速度、寻优精度和逃离局部最优的能力上明显优于多种经典粒子群优化算法,如充分联系的粒子群优化算法(FIPS)、基于时变加速度系数的自组织分层粒子群优化算法(HPSO-TVAC)、综合学习的粒子群优化算法(CLPSO)、自适应粒子群优化算法(APSO)、双中心粒子群优化算法(DCPSO)和具有快速收敛和自适应逃逸功能的粒子群优化算法(FAPSO)等。 展开更多
关键词 粒子优化算法 反向学习 算法状态 自适应逃逸
在线阅读 下载PDF
自适应粒子群算法汽车传动系统参数优化匹配 被引量:1
16
作者 吴素珍 郑群雄 毕建平 《机械设计与制造》 北大核心 2024年第12期51-55,共5页
为提高汽车的动力性,降低汽车的燃油消耗,提出一种传动系统参数多目标优化匹配方法。基于机械式传动系统,分别以百公里燃油消耗量和(0~100)km/h加速时间为优化分目标,构建整车动力性模型和经济性模型;通过设定不同的动力性约束指标,引... 为提高汽车的动力性,降低汽车的燃油消耗,提出一种传动系统参数多目标优化匹配方法。基于机械式传动系统,分别以百公里燃油消耗量和(0~100)km/h加速时间为优化分目标,构建整车动力性模型和经济性模型;通过设定不同的动力性约束指标,引入加权系数法和罚函数,建立了多工况下整车传动系统的参数优化模型。为提高传动系参数的匹配程度,提出一种基于动态学习因子和自适应调节惯性权重策略下的改进自适应粒子群优化算法,获得整车传动系统参数的最优集。仿真结果表明,改进后的算法收敛速度快,更具“活”性,很好地避免了算法的“早熟收敛”,较传统的自适应算法而言,在六循环工况下的百公里油耗减少了1.5%,(0~100)km/h加速时间缩短了2.3%,最高车速也提高了0.53%,这些结果都充分验证了改进的自适应粒子群算法的可靠性和有效性。 展开更多
关键词 传动系参数 自适应粒子算法 仿真 参数优化匹配
在线阅读 下载PDF
基于自适应粒子群算法的船舶机舱双层布局优化研究
17
作者 杨帆 张佳宁 +1 位作者 刁峰 苏勇瑞 《舰船科学技术》 北大核心 2024年第17期69-76,共8页
为提高船舶机舱的智能设计水平,提出一种针对于船舶机舱设备布局的智能优化方法。以某船机舱为例,通过分析船舶机舱设备对于机舱内部温度的耐受性、通风需求、以及设备自重对于船舶重心位置的影响,建立船舶机舱设备的分层评分机制,实现... 为提高船舶机舱的智能设计水平,提出一种针对于船舶机舱设备布局的智能优化方法。以某船机舱为例,通过分析船舶机舱设备对于机舱内部温度的耐受性、通风需求、以及设备自重对于船舶重心位置的影响,建立船舶机舱设备的分层评分机制,实现设备在机舱内部的分层布置。从设备系统群关系、流通成本、倾斜力矩、吊装需求等6个角度出发对机舱双层布局进行分析并建立数学模型,运用罚函数法处理约束条件,运用自适应粒子群算法求解该数学模型,得出布局方案并进行合理性分析。使用该方法优化之后,同一系统或邻接性较强的设备紧密布置,非邻接性设备分散布置,设备之间的流通成本降低约12%,吊装距离减少约100%,倾斜力矩之和降低约130%。结果分析表明,该方法能有效地解决船舶机舱的布局优化问题,可为解决类似的布局优化问题提供参考。 展开更多
关键词 机舱布局 评分机制 数学模型 自适应粒子算法
在线阅读 下载PDF
混合策略改进的粒子群算法 被引量:7
18
作者 朱茂桃 刘欢 +1 位作者 吴佘胤 商高高 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第1期110-121,共12页
针对粒子群算法易陷入局部最优、收敛精度低、收敛速度慢等缺陷,提出了基于混合策略的改进粒子群算法。使用融合Circle映射与精英反向学习的策略初始化种群,提升初始种群的质量,同时加快收敛速度;在粒子速度更新方式中引入蜘蛛移动策略... 针对粒子群算法易陷入局部最优、收敛精度低、收敛速度慢等缺陷,提出了基于混合策略的改进粒子群算法。使用融合Circle映射与精英反向学习的策略初始化种群,提升初始种群的质量,同时加快收敛速度;在粒子速度更新方式中引入蜘蛛移动策略平衡算法的全局搜索与局部搜索;提出了基于自适应t分布的变异策略,增强算法全局搜索和跳出局部最优能力;对15个单峰和多峰函数进行仿真实验,与其他3种算法进行了对比分析,结果表明:所提出的改进算法具有很强的寻优能力与稳定性。 展开更多
关键词 粒子优化算法 蜘蛛优化 自适应t分布
在线阅读 下载PDF
基于改进T分布烟花-粒子群算法的AUV全局路径规划
19
作者 刘志华 张冉 +2 位作者 郝梦男 安凯晨 陈嘉兴 《电子学报》 EI CAS CSCD 北大核心 2024年第9期3123-3134,共12页
针对传统粒子群算法在处理自主水下机器人(Autonomous Underwater Vehicle,AUV)全局路径规划时面临的寻优时间长、能耗高的问题,本文提出一种改进的T分布烟花-粒子群算法(T-distribution Fireworks-Particle Swarm Optimization Algorit... 针对传统粒子群算法在处理自主水下机器人(Autonomous Underwater Vehicle,AUV)全局路径规划时面临的寻优时间长、能耗高的问题,本文提出一种改进的T分布烟花-粒子群算法(T-distribution Fireworks-Particle Swarm Optimization Algorithm,TFWA-PSO),该算法融合了烟花算法的高效全局搜索能力和粒子群算法的快速局部寻优特性.在变异阶段,提出自适应T分布变异来扩大搜索范围,并在理论上证明了该变异方式能够使个体在局部最优解附近增强搜索能力.在选择阶段提出了适应度选择策略,淘汰适应度差的个体,解决了传统烟花算法易丢失优秀个体的问题,并对改进的T分布烟花算法与传统烟花算法的收敛速度进行对比.将改进算法的爆炸操作、变异操作和选择策略融合到粒子群算法中,对粒子群算法的速度更新公式进行了改进,同时从理论上对所改进的算法进行了收敛性证明.仿真实验结果表明,TFWA-PSO能够有效规划出一条最短路径,同时与给定的智能优化算法相比,TFWA-PSO在寻找最优路径的时间上平均降低了24.72%,能耗平均降低了17.33%,路径长度平均降低了16.96%. 展开更多
关键词 自主水下机器人 全局路径规划 烟花算法 粒子算法 自适应T分布变异 收敛性证明
在线阅读 下载PDF
基于自适应动态粒子群优化的RAK-SVD方法
20
作者 乐友喜 姚晓辰 +1 位作者 付俊楠 葛传友 《石油地球物理勘探》 EI CSCD 北大核心 2024年第3期494-503,共10页
K均值奇异值分解(K-SVD)算法是一种行之有效的地震资料去噪方法,但由于其稀疏分解存在不确定性,需要引入正则项对其改进。为此,在常规粒子群算法的基础上,提出了一种自适应动态粒子群算法优化正则化参数的正则化近似K-SVD(RAK-SVD)去噪... K均值奇异值分解(K-SVD)算法是一种行之有效的地震资料去噪方法,但由于其稀疏分解存在不确定性,需要引入正则项对其改进。为此,在常规粒子群算法的基础上,提出了一种自适应动态粒子群算法优化正则化参数的正则化近似K-SVD(RAK-SVD)去噪方法。首先通过修改字典原子和相关参数,解决了由于常规粒子群算法的惯性参数固定不变,导致后期搜索效率下降的问题;其次将正则化系数引入近似K-SVD(AK-SVD)方法,明显提升了去噪效果;最后利用自适应动态粒子群算法自动优选AK-SVD方法中的正则化参数,提高了稀疏分解的确定性,在对强反射信号进行去噪的同时加强了对弱信号的保护。模型测试和实际应用均表明,该方法有利于弱信号的提取和识别,不仅能够显著改善弱地震信号的去噪效果,还提升了计算效率。该方法具有一定的实际应用价值。 展开更多
关键词 自适应动态粒子算法 K-SVD字典 正则化 去噪
在线阅读 下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部