期刊文献+
共找到596篇文章
< 1 2 30 >
每页显示 20 50 100
基于自然选择粒子群算法的含DG接入的配电网无功优化 被引量:41
1
作者 徐俊俊 黄永红 +2 位作者 王琪 陈晖 孙欣 《电测与仪表》 北大核心 2014年第10期33-38,50,共7页
以分布式电源接入配电网运行时产生的有功网损最小并能改善电压质量为目标,提出将自然选择机理与粒子群算法相结合的配电网无功优化方法。将DG向系统注入的无功功率作为配电网无功优化的控制变量,建立了包括目标函数、潮流方程等式约束... 以分布式电源接入配电网运行时产生的有功网损最小并能改善电压质量为目标,提出将自然选择机理与粒子群算法相结合的配电网无功优化方法。将DG向系统注入的无功功率作为配电网无功优化的控制变量,建立了包括目标函数、潮流方程等式约束和不等式约束的配电网无功优化数学模型。基于自然选择的粒子群算法其核心思想为每次迭代过程中将整个粒子群按适应值排序,用群体中最好的一半的粒子的速度和位置替换最差的一半的速度和位置,同时保留原来每个个体所记忆的历史最优值。通过对改进后的IEEE33节点配电系统进行仿真分析,结果表明所提出的算法具有很强的全局收敛性和稳定性,并能以最快的收敛速度搜索到系统最小网损值。 展开更多
关键词 配电网 电压质量 自然选择 粒子优化算法 无功优化
在线阅读 下载PDF
基于高斯扰动和自然选择的改进粒子群优化算法 被引量:24
2
作者 艾兵 董明刚 《计算机应用》 CSCD 北大核心 2016年第3期687-691,共5页
为了有效地平衡粒子群算法的全局与局部搜索性能,提出一种基于高斯扰动和自然选择的改进粒子群优化算法。该算法在采用简化粒子群优化算法的基础上,考虑到个体最优粒子间的相互影响,使用所有融入高斯扰动的个体最优的平均值代替每个粒... 为了有效地平衡粒子群算法的全局与局部搜索性能,提出一种基于高斯扰动和自然选择的改进粒子群优化算法。该算法在采用简化粒子群优化算法的基础上,考虑到个体最优粒子间的相互影响,使用所有融入高斯扰动的个体最优的平均值代替每个粒子的个体最优值,并且借鉴自然选择中适者生存的进化机制提高算法优化性能;同时通过含有惯性权重停止阈值的自适应调节余弦函数递减策略来实现对惯性权重的非线性调整并采用异步变化调整策略来改善粒子的学习能力。仿真实验结果表明,所提算法在收敛速度和精度等方面均有提高,寻优性能优于近期文献中的几种改进的粒子群优化算法。 展开更多
关键词 粒子优化 高斯扰动 自然选择 惯性权重 异步变化
在线阅读 下载PDF
邻域自适应粒子群算法求解地源热泵区域能源系统鲁棒优化调度问题
3
作者 吴亮红 王维 +1 位作者 张红强 贾睿 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第6期1089-1100,共12页
针对地源热泵区域能源系统中冷热负荷和机组效能的不确定性,本文提出了一种考虑双重不确定性的鲁棒优化调度方法.首先,基于多面体不确定模型描述调度模型中的鲁棒变量.然后,针对建筑冷热负荷不确定性,采用对偶原理将双层优化模型等价为... 针对地源热泵区域能源系统中冷热负荷和机组效能的不确定性,本文提出了一种考虑双重不确定性的鲁棒优化调度方法.首先,基于多面体不确定模型描述调度模型中的鲁棒变量.然后,针对建筑冷热负荷不确定性,采用对偶原理将双层优化模型等价为单层优化模型;对于机组效能不确定性,采用场景法进行分析.最后,采用多目标优化约束处理方法处理鲁棒优化调度模型中的约束条件.同时,为更加高效、准确求解所构建的优化调度模型,提出了一种邻域自适应粒子群优化算法(NAPSO).实验结果表明,在制冷和制热工况下,与经验运行策略相比,本文所提方法可分别减少7.22%和5.55%的系统运行成本,是一种解决地源热泵区域能源系统鲁棒优化调度的有效方法. 展开更多
关键词 地源热泵 鲁棒优化调度 邻域自适应 粒子优化 不确定性
在线阅读 下载PDF
粒子群优化随机森林机床热误差建模与补偿
4
作者 苏哲 郭世杰 +3 位作者 丁强强 唐术锋 邹云鹤 吕贺 《机床与液压》 北大核心 2025年第12期8-16,共9页
为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策... 为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策略来避免粒子群算法陷入局部最优解,构建了基于APSO-RF的直线轴热误差预测模型。为了验证模型的准确性与实用性,在VDL-600A型加工中心上以X轴为例进行热误差测量与建模验证,基于FANUC系统坐标原点偏移(EMZPS)功能结合自主搭建的热误差辅助补偿系统,实现了计算机与系统间的通信连接。结果表明:APSO-RF热误差模型的均方根误差相比PSO-SVM、RF及BP模型分别降低了18.3%、45.2%及47.2%,有效提高了建模精度。根据构建的模型与补偿系统功能模块,补偿后热误差最大值由71.15μm降至13.4μm,精度提升81.2%,所构建的热误差补偿方法可有效提高机床的加工精度及稳定性。 展开更多
关键词 数控机床 热误差补偿 自适应粒子优化随机森林(APSO-RF)模型 浣熊优化算法(COA)
在线阅读 下载PDF
基于粒子群优化BP神经网络的核事故源项反演
5
作者 游清悦 曹博 +3 位作者 彭丁萍 李中昊 缪学伟 陈洲亮 《核电子学与探测技术》 北大核心 2025年第3期371-381,共11页
核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所... 核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所需的数据集。利用Matlab构建了粒子群算法(Particle Swarm Optimization,PSO)优化误差反向传播(Back Propagation,BP)神经网络的核事故源项反演模型,同时考虑了粒子群算法中超参数和适应度函数的不同对算法优化性能的影响。结果表明:PSOBP模型源项反演测试结果的平均绝对百分比误差为2.14%,平均绝对误差为0.011437,均方差为0.000685,各个评价指标明显优于BP神经网络,验证了该模型的可行性,有助于快速核应急响应。 展开更多
关键词 源项反演 BP神经网络 粒子优化 参数优化 适应度函数
在线阅读 下载PDF
基于改进粒子群优化算法的船舶避碰研究 被引量:1
6
作者 朱凯鹏 王全政 +3 位作者 杨文政 于庆州 王泽凡 王晓原 《传感器与微系统》 北大核心 2025年第4期40-43,47,共5页
随着海上贸易的日益增长,海洋运输已逐渐成为世界各国运输和贸易发展的重要环节,如何避免船舶碰撞已成为海上贸易中的一个重要问题。针对海上船舶避碰问题,本文提出了一种改进粒子群优化(IPSO)算法,该算法根据当前粒子目标函数的平均值... 随着海上贸易的日益增长,海洋运输已逐渐成为世界各国运输和贸易发展的重要环节,如何避免船舶碰撞已成为海上贸易中的一个重要问题。针对海上船舶避碰问题,本文提出了一种改进粒子群优化(IPSO)算法,该算法根据当前粒子目标函数的平均值动态调整惯性权值,另外考虑到船舶操纵的安全性,改进了适应度函数,并结合IPSO算法,对函数进行求解。通过MATLAB仿真结果表明,与传统的PSO算法相比,IPSO算法的收敛速度提高了37.5%,搜索效率得到显著增强。 展开更多
关键词 船舶避碰 改进粒子优化算法 自适应惯性权值 避碰决策
在线阅读 下载PDF
自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用 被引量:2
7
作者 程金芮 金瑾 +3 位作者 张朝龙 孔超 何嘉 张鑫 《计算机应用》 CSCD 北大核心 2024年第S01期60-64,共5页
针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与... 针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与局部信息的协同作用和智能切换学习策略。具体地,ARCLPSO利用全局和局部信息的协同作用令粒子向更优的方向移动,通过智能的切换粒子学习策略平衡粒子的搜索性能和收敛速度,提高搜索速度和搜索质量。在NAS-Bench-101数据集上的实验结果表明,ARCLPSO的收敛时间相较于传统进化算法(REA)和随机搜索(RS),分别减少了40.9%和55.2%。 展开更多
关键词 神经网络架构搜索 粒子优化 进化算法 NAS-Bench-101 自适应的协作学习算法
在线阅读 下载PDF
基于峰值导向型粒子群优化算法的城市水文模型自动率定方法
8
作者 许王辰 陈瑞弘 孙岸炜 《水利水电科技进展》 北大核心 2025年第4期31-38,共8页
针对城市多参数水文模型中径流及峰现时间人工率定效率低、精度不足的问题,提出一种基于改进粒子群优化(PSO)算法的模型参数自动率定方法。该方法在PSO算法中引入Logistic映射和莱维飞行,分别用于粒子初始化和位置更新,以避免陷入局部最... 针对城市多参数水文模型中径流及峰现时间人工率定效率低、精度不足的问题,提出一种基于改进粒子群优化(PSO)算法的模型参数自动率定方法。该方法在PSO算法中引入Logistic映射和莱维飞行,分别用于粒子初始化和位置更新,以避免陷入局部最优;同时结合城市产汇流模型特征,构建包含整体拟合、峰值及峰现时间的加权多目标适应度函数,以提高模型对关键水文特征的捕捉能力。通过Python实现该方法与机理模型(雨洪管理模型,SWMM)的交互,并利用试验场实测数据对10个关键水文参数进行率定,比较不同权重取值的适应度函数的拟合效果。结果表明,构建的加权多目标适应度函数在城市排水系统应急调度应用中更具优势,尤其在提高峰值与峰现时间模拟精度方面表现更优。将该方法应用于九江实际排水系统,峰值误差和峰现时间误差分别为0.56%和-6.82%,验证了方法的可行性与准确性。 展开更多
关键词 城市水文模型 多目标适应度函数 粒子优化算法 自动率定 SWMM
在线阅读 下载PDF
改进粒子群算法的径向柱塞液压马达内曲线优化
9
作者 李佳璇 康绍鹏 +4 位作者 杨静 刘凯磊 强红宾 柯贤胜 崔毅 《现代制造工程》 北大核心 2025年第2期69-75,共7页
径向柱塞液压马达在中大型机械装备中应用十分广泛,然而因其内部存在冲击与疲劳磨损等问题,对径向柱塞液压马达的寿命与性能造成了一定的影响。针对上述问题,提出了一种改进粒子群算法优化径向柱塞液压马达内曲线的方法,该方法将等加速... 径向柱塞液压马达在中大型机械装备中应用十分广泛,然而因其内部存在冲击与疲劳磨损等问题,对径向柱塞液压马达的寿命与性能造成了一定的影响。针对上述问题,提出了一种改进粒子群算法优化径向柱塞液压马达内曲线的方法,该方法将等加速度曲线重构为含补偿区的等加速度曲线,以减小冲击和接触应力突变值。以粒子群算法(Particle Swarm Optimization,PSO)为基础,加入自适应非线性动态权重与多子种群竞争优化策略,构建一种改进粒子群算法,对各区段角度进行重新分配,重新生成含补偿区的径向柱塞液压马达内曲线。对比优化前后的结果表明,最大接触应力下降了2.54%,最大接触应力处的突变值下降至0;接触应力不再阶跃式上升,有上升过程,冲击较小。该研究能够为径向柱塞液压马达的设计提供参考,有效减缓疲劳与磨损,降低冲击影响,从而延长液压马达的使用寿命。 展开更多
关键词 径向柱塞液压马达 内曲线 自适应非线性动态权重 多子种竞争优化策略 改进粒子算法
在线阅读 下载PDF
自适应粒子群算法汽车传动系统参数优化匹配 被引量:1
10
作者 吴素珍 郑群雄 毕建平 《机械设计与制造》 北大核心 2024年第12期51-55,共5页
为提高汽车的动力性,降低汽车的燃油消耗,提出一种传动系统参数多目标优化匹配方法。基于机械式传动系统,分别以百公里燃油消耗量和(0~100)km/h加速时间为优化分目标,构建整车动力性模型和经济性模型;通过设定不同的动力性约束指标,引... 为提高汽车的动力性,降低汽车的燃油消耗,提出一种传动系统参数多目标优化匹配方法。基于机械式传动系统,分别以百公里燃油消耗量和(0~100)km/h加速时间为优化分目标,构建整车动力性模型和经济性模型;通过设定不同的动力性约束指标,引入加权系数法和罚函数,建立了多工况下整车传动系统的参数优化模型。为提高传动系参数的匹配程度,提出一种基于动态学习因子和自适应调节惯性权重策略下的改进自适应粒子群优化算法,获得整车传动系统参数的最优集。仿真结果表明,改进后的算法收敛速度快,更具“活”性,很好地避免了算法的“早熟收敛”,较传统的自适应算法而言,在六循环工况下的百公里油耗减少了1.5%,(0~100)km/h加速时间缩短了2.3%,最高车速也提高了0.53%,这些结果都充分验证了改进的自适应粒子群算法的可靠性和有效性。 展开更多
关键词 传动系参数 自适应粒子算法 仿真 参数优化匹配
在线阅读 下载PDF
基于自适应混沌粒子群优化算法的多目标无功优化 被引量:79
11
作者 李娟 杨琳 +2 位作者 刘金龙 杨德龙 张晨 《电力系统保护与控制》 EI CSCD 北大核心 2011年第9期26-31,共6页
针对粒子群无功优化中由于随机生成代表控制变量值的粒子,使得在优化迭代过程中易陷入局部最优解,而且后期收敛速度慢等问题,将混沌优化算法融合到粒子群算法中,提出了混沌粒子群算法求解多目标无功优化问题。该算法在初始化粒子即无功... 针对粒子群无功优化中由于随机生成代表控制变量值的粒子,使得在优化迭代过程中易陷入局部最优解,而且后期收敛速度慢等问题,将混沌优化算法融合到粒子群算法中,提出了混沌粒子群算法求解多目标无功优化问题。该算法在初始化粒子即无功优化控制变量值时,采用混沌思想,增加控制变量取值的多样性;通过粒子群无功优化算法计算各个粒子对应的适应值即无功优化目标函数值,并按照其大小择优选取控制变量值进行混沌优化以帮助无功优化控制变量跳出局部极值区域;并根据无功优化目标函数值自适应地调整其惯性权重系数以提高全局与局部搜索能力。通过算例分析表明,采用自适应混沌粒子群算法进行无功优化,能够及时跳出局部最优得到全局最优解,且收敛速度快。 展开更多
关键词 自适应 混沌粒子优化算法 无功优化 惯性权重
在线阅读 下载PDF
基于自适应网格的多目标粒子群优化算法 被引量:30
12
作者 杨俊杰 周建中 +2 位作者 方仍存 李英海 刘力 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第21期5843-5847,共5页
针对现有多目标进化算法计算复杂度高、搜索效率低等缺点,提出了基于自适应网格的多目标粒子群优化(AGA-MOPSO)算法,其特点包括:评估非劣解集中粒子密度估计信息的自适应网格算法;能够平衡全局和局部搜索能力的基于AGA的Pareto最优解搜... 针对现有多目标进化算法计算复杂度高、搜索效率低等缺点,提出了基于自适应网格的多目标粒子群优化(AGA-MOPSO)算法,其特点包括:评估非劣解集中粒子密度估计信息的自适应网格算法;能够平衡全局和局部搜索能力的基于AGA的Pareto最优解搜索技术;删除非劣解集集中品质差的多余粒子以维持非劣解集在一定规模的基于AGA的非劣解集截断技术。仿真计算表明,和文献中典型的多目标进化算法比较,AGA-MOPSO算法在求解复杂大规模优化问题方面表现了良好的性能。 展开更多
关键词 多目标 优化 粒子优化 自适应网格算法
在线阅读 下载PDF
基于自适应变异粒子群算法的电动汽车换电池站充电调度多目标优化 被引量:65
13
作者 田文奇 和敬涵 +2 位作者 姜久春 牛利勇 王小君 《电网技术》 EI CSCD 北大核心 2012年第11期25-29,共5页
大规模电动汽车用户的无序充电行为会对电网造成"峰上加峰"等影响,因此电动汽车规模化应用迫切要求实现对充电行为的引导和调度。电动汽车换电站具有受可调度时间约束影响小等特点,与个体电动汽车相比较易实现充电调度。根据... 大规模电动汽车用户的无序充电行为会对电网造成"峰上加峰"等影响,因此电动汽车规模化应用迫切要求实现对充电行为的引导和调度。电动汽车换电站具有受可调度时间约束影响小等特点,与个体电动汽车相比较易实现充电调度。根据换电站的特点以换电站各时刻的充电功率为控制对象,建立多目标的调度策略数学模型,并采用自适应变异的粒子群算法求解以减小标准粒子群容易早熟对优化结果的影响,得到次日优化充电计划。基于某地区负荷曲线进行算例仿真,验证了算法的有效性,比较了单目标优化和多目标优化的调度策略对负荷曲线的影响。结果表明,换电站充电调度策略采用多目标优化时能够克服单目标优化填充"最低谷"效果差的问题,有效地降低电网峰谷差,达到平稳负荷波动的效果。 展开更多
关键词 电动汽车 换电池站 充电调度 多目标优化 自适应变异的粒子优化算法
在线阅读 下载PDF
基于反馈策略的自适应粒子群优化算法 被引量:29
14
作者 俞欢军 张丽平 +1 位作者 陈德钊 胡上序 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2005年第9期1286-1291,共6页
为了克服常规粒子群优化(SPSO)算法在多峰函数寻优应用中容易出现早熟的缺点,提出了一种基于反馈策略的自适应粒子群优化(APSO)算法.考虑到进化过程中群体多样性损失过快,采用种群分布熵和平均粒距两个种群多样性参数,来均衡算法的勘探... 为了克服常规粒子群优化(SPSO)算法在多峰函数寻优应用中容易出现早熟的缺点,提出了一种基于反馈策略的自适应粒子群优化(APSO)算法.考虑到进化过程中群体多样性损失过快,采用种群分布熵和平均粒距两个种群多样性参数,来均衡算法的勘探和开发能力.基于惯性权值随种群多样性变化而变化的动态分析,建立了惯性权值与平均粒距之间的线性函数关系,并将该函数关系融入到APSO算法中.测试结果表明,与常规粒子群优化算法相比,该算法在多峰雨数寻优时,成功率和精确度都有显著提高,且全局收敛速度快;在求解异或(XOR)分类问题时成功概率提高,收敛速度加快,APSO算法对神经网络的训练更加有效. 展开更多
关键词 早熟 自适应算法 粒子优化
在线阅读 下载PDF
基于自适应Tent混沌搜索的粒子群优化算法 被引量:14
15
作者 黄美灵 赵之杰 +4 位作者 浦立娜 吴非 赵美玲 陈浩 陈明哲 《计算机应用》 CSCD 北大核心 2011年第2期485-489,共5页
为解决粒子群优化算法易于陷入局部最优问题,提出基于自适应Tent混沌搜索的粒子群优化算法。应用Tent映射初始化均匀分布的粒群,并以当前整个粒子群迄今为止搜索到的最优位置为基础产生Tent混沌序列,混沌序列的搜索范围采用自适应调整... 为解决粒子群优化算法易于陷入局部最优问题,提出基于自适应Tent混沌搜索的粒子群优化算法。应用Tent映射初始化均匀分布的粒群,并以当前整个粒子群迄今为止搜索到的最优位置为基础产生Tent混沌序列,混沌序列的搜索范围采用自适应调整方法。该方法可以有效避免计算的盲目性,还能够快速搜寻到最优解。实验表明该算法在多个标准测试函数下都超越了同类改进算法。 展开更多
关键词 粒子优化算法 TENT映射 自适应 混沌搜索
在线阅读 下载PDF
自适应变异的粒子群优化算法 被引量:51
16
作者 阳春华 谷丽姗 桂卫华 《计算机工程》 CAS CSCD 北大核心 2008年第16期188-190,共3页
针对粒子群算法的早熟收敛问题,提出一种新的基于群体适应度变化率自适应变异的粒子群优化算法。该算法根据群体适应度变化率自适应调整惯性权重的取值,根据当前种群的平均粒距对种群中部分粒子进行变异操作。自适应调整与变异操作能增... 针对粒子群算法的早熟收敛问题,提出一种新的基于群体适应度变化率自适应变异的粒子群优化算法。该算法根据群体适应度变化率自适应调整惯性权重的取值,根据当前种群的平均粒距对种群中部分粒子进行变异操作。自适应调整与变异操作能增强算法跳出局部最优的能力,增大寻找全局最优的几率。对几种典型函数的测试结果表明,新算法的全局搜索能力有了明显的提高,有效避免了早熟收敛问题。 展开更多
关键词 粒子优化算法 自适应变异 早熟收敛
在线阅读 下载PDF
一种自适应模拟退火粒子群优化算法 被引量:80
17
作者 闫群民 马瑞卿 +1 位作者 马永翔 王俊杰 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2021年第4期120-127,共8页
为了提高粒子群算法的寻优速度和精度,避免陷入局部优解,提出一种自适应模拟退火粒子群优化算法。采用双曲正切函数来控制惯性权重系数,进行非线性自适应变化;利用线性变化策略控制社会学习因子和自我学习因子,达到改变不同阶段寻优重... 为了提高粒子群算法的寻优速度和精度,避免陷入局部优解,提出一种自适应模拟退火粒子群优化算法。采用双曲正切函数来控制惯性权重系数,进行非线性自适应变化;利用线性变化策略控制社会学习因子和自我学习因子,达到改变不同阶段寻优重点的目的;引入模拟退火操作,根据种群的初始状态设置一个温度,根据米特罗波利斯准则和温度指导种群以一定的概率接受差解,保证了算法跳出局部最优解的能力。为验证这种算法的效果,选择7种典型测试函数与已有文献中提出的5种粒子优化算法进行对比实验,根据寻优结果的平均值、标准差以及迭代次数等数据,证明文中所提算法在迭代精度、收敛速度以及稳定性上都有很大的提升,有效地弥补了经典粒子群算法的缺陷。 展开更多
关键词 粒子优化 模拟退火 惯性权重系数 自适应调整策略
在线阅读 下载PDF
基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测 被引量:47
18
作者 陈道君 龚庆武 +2 位作者 金朝意 张静 王定美 《电网技术》 EI CSCD 北大核心 2013年第4期974-980,共7页
智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm opt... 智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法中加入自适应早熟判定准则、混合扰动算子和动态扩张收缩系数,提出了自适应扰动量子粒子群优化算法(adaptive disturbance quantum-behaved particle swarm optimization,ADQPSO),并使用ADQPSO优化选择SVR的学习参数。实例研究表明,ADQPSO算法全局寻优能力强、鲁棒性好、计算耗时短,利用ADQPSO优化得到的SVR参数,可有效提高模型的预测精度;与反向传播神经网络(back propagation neural network,BPNN)和径向基神经网络(radial basis functionneural network,RBFNN)相比,提出的ADQPSO-SVR能够提高短期风电功率预测的准确性和稳定性。 展开更多
关键词 短期风电功率预测 学习参数选择 自适应扰动量子粒子优化算法 支持向量回归机
在线阅读 下载PDF
基于反向云自适应粒子群算法的多目标无功优化 被引量:11
19
作者 曹生让 丁晓群 +1 位作者 王庆燕 张静 《中国电力》 CSCD 北大核心 2018年第7期21-27,共7页
针对粒子群算法在高维复杂问题寻优时易陷入局部寻优的现象,提出了反向云自适应粒子群算法(OCAPSO),通过反向学习加快算法的收敛速度,使用云模型来平衡粒子的全部搜索和局部搜索能力,使用自适应突变机制增强种群的多样性。用高维广义Sch... 针对粒子群算法在高维复杂问题寻优时易陷入局部寻优的现象,提出了反向云自适应粒子群算法(OCAPSO),通过反向学习加快算法的收敛速度,使用云模型来平衡粒子的全部搜索和局部搜索能力,使用自适应突变机制增强种群的多样性。用高维广义Schwarz函数对OCAPSO的有效性进行验证,进一步以IEEE30节点系统进行单目标和多目标无功优化测试并将测试结果与粒子群优化(PSO),进化算法(EA)等测试结果进行比较,证实了该算法的优越性。分析表明,OCAPSO算法用于解决多目标无功优化问题有效可行。 展开更多
关键词 无功优化 粒子优化 反向学习 云模型 自适应 多目标
在线阅读 下载PDF
自适应粒子群优化的高压共轨燃油喷嘴多学科优化设计 被引量:12
20
作者 袁文华 鄂加强 +2 位作者 龚金科 王春华 彭雨 《内燃机工程》 EI CAS CSCD 北大核心 2009年第5期63-67,共5页
为了确保高压共轨燃油喷嘴整体性能提高,以高压共轨燃油喷嘴雾化性能、压力损失为目标函数建立了多学科设计优化模型,并充分考虑各学科之间的耦合效应,采用自适应粒子群优化算法进行了多学科设计优化。结果表明:雾化性能提高了36.77%,... 为了确保高压共轨燃油喷嘴整体性能提高,以高压共轨燃油喷嘴雾化性能、压力损失为目标函数建立了多学科设计优化模型,并充分考虑各学科之间的耦合效应,采用自适应粒子群优化算法进行了多学科设计优化。结果表明:雾化性能提高了36.77%,压力损失下降了11.27%,整体性能提高了16.60%。 展开更多
关键词 内燃机 高压共轨 喷嘴 自适应粒子 多学科优化设计
在线阅读 下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部