期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
基于图卷积的自适应特征融合MRI脑肿瘤分割方法
1
作者 张野 张睦卿 +1 位作者 袁学刚 牛大田 《河北科技大学学报》 北大核心 2025年第4期395-404,共10页
针对U-Net模型在MRI脑肿瘤分割上存在的全局信息捕获不足和深层语义信息融合不充分等问题,提出一种新的基于图卷积的自适应特征融合网络(adaptive spatial and graph-convolutional U-Net, ASGU-Net)。以三维U-Net为基础,通过构建图卷... 针对U-Net模型在MRI脑肿瘤分割上存在的全局信息捕获不足和深层语义信息融合不充分等问题,提出一种新的基于图卷积的自适应特征融合网络(adaptive spatial and graph-convolutional U-Net, ASGU-Net)。以三维U-Net为基础,通过构建图卷积推理模块,捕获额外的远程上下文特征;在编解码器中引入动态蛇形卷积(dynamic snake convolution, DSConv)能更精准地契合肿瘤形态各异的特点,提高边缘特征提取能力,从而有效提升分割精度;在解码器中引入自适应空间特征融合(adaptive spatial feature fusion, ASFF)模块,通过整合多个编码器块捕获的语义信息提升特征融合效果。在公开的BraTS 2019—2021数据集上的评估表明,整个肿瘤、肿瘤核心和增强肿瘤的Dice值分别为90.70%/90.70%/91.00%、84.90%/84.00%/88.80%和77.30%/77.40%/82.50%,证明了ASGU-Net在脑肿瘤分割任务中的有效性。ASGU-Net可有效解决全局信息捕获不足和特征融合不充分的问题,为脑肿瘤高精度自动化分割提供了参考。 展开更多
关键词 计算机神经网络 脑肿瘤分割 三维U-Net 图卷积推理瓶颈层 动态蛇形卷积 自适应空间特征融合
在线阅读 下载PDF
基于特征融合和增强的蚕茧图像分类模型
2
作者 刘莫尘 侯欣 +6 位作者 韦伟 张鑫山 李法德 宋占华 张桂征 梁光健 闫银发 《蚕业科学》 北大核心 2025年第1期59-67,共9页
为对原料茧中的上车茧和下茧进行准确分类,实现蚕茧分拣智能化、机械化,文中提出了一种基于多尺度特征融合和增强的双线性池化分类模型。首先以ResNet41作为特征提取骨干网络构建双线性池化模型,增强网络特征提取能力的同时得到不同维... 为对原料茧中的上车茧和下茧进行准确分类,实现蚕茧分拣智能化、机械化,文中提出了一种基于多尺度特征融合和增强的双线性池化分类模型。首先以ResNet41作为特征提取骨干网络构建双线性池化模型,增强网络特征提取能力的同时得到不同维度语义信息;然后引入自适应空间特征融合模块,融合蚕茧浅层图像信息和深层语义信息,解决ResNet41在特征提取过程中出现的信息丢失问题;最后采用挤压和激发模块抑制冗余信息,降低分类偏差。改进模型B-Res41-ASE在测试集中的分类准确率和F 1值分别为93.7%和94.9%,对上车茧的分类精确率为97.8%,对黄斑茧、柴印茧、烂茧、瘪茧、薄皮茧等下茧的分类精确率分别为96.4%、93.7%、98.6%、94.5%、93.1%,相比于改进前模型和常用的细粒度分类模型均有明显优势,且B-Res41-ASE对蚕茧的可判别区域的聚焦更精准。实验结果表明,文中提出的优化方法在分类准确率、鲁棒性等方面优于其他蚕茧分类模型,可为蚕茧智能分拣提供理论依据。 展开更多
关键词 蚕茧分类 双线性池化 自适应空间特征融合 可视化分析
在线阅读 下载PDF
基于多策略融合斑马优化算法的特征选择方法 被引量:2
3
作者 王震 王新春 +2 位作者 杨培宏 费鹏宇 郑学奎 《现代电子技术》 北大核心 2024年第18期149-155,共7页
针对传统斑马优化算法在求解复杂优化问题时精度低、收敛速度慢和易陷入局部最优的不足,提出一种多策略融合的改进斑马优化算法(IZOA)。首先,为解决斑马个体初始位置分布不均匀的问题,引入混沌映射来增加探索过程的种群多样性;其次,受... 针对传统斑马优化算法在求解复杂优化问题时精度低、收敛速度慢和易陷入局部最优的不足,提出一种多策略融合的改进斑马优化算法(IZOA)。首先,为解决斑马个体初始位置分布不均匀的问题,引入混沌映射来增加探索过程的种群多样性;其次,受自适应权重和黄金正弦算法思想启发,提出一种基于自适应递减权重和黄金正弦更新机制的位置更新策略,用于改进斑马算法的局部寻优与全局探索能力;然后,进行标准测试函数实验,验证了IZOA能够有效提升寻优精度和收敛速度;最后,将K近邻分类器作为待优化目标,选取UCI库的12个标准数据集进行特征选择实验,并利用改进后的算法在特征选择模型中进行最优特征子集搜寻。实验结果表明,相比传统算法,所提算法的平均分类准确率提升4.47%,平均适应度值降低2.5%,验证了该算法在特征选择领域的优越性。 展开更多
关键词 斑马优化算法 策略融合 特征选择 混沌映射 自适应权重 黄金正弦算法 K近邻分类器
在线阅读 下载PDF
市县级国土空间“三类”规划中城市绿地指标体系构建策略 被引量:1
4
作者 朱镱妮 李翅 《中国园林》 北大核心 2025年第1期94-101,共8页
城市绿地指标直接反映城市绿地的数量和质量水平,关乎城市绿地系统能否满足居民美好生活需要。原城乡规划体系下各类标准规范规定的城市绿地指标体系较完善,但通过对2021年城市建设统计年鉴中城市绿地现状数据和部分城市编制的规划成果... 城市绿地指标直接反映城市绿地的数量和质量水平,关乎城市绿地系统能否满足居民美好生活需要。原城乡规划体系下各类标准规范规定的城市绿地指标体系较完善,但通过对2021年城市建设统计年鉴中城市绿地现状数据和部分城市编制的规划成果进行分析,发现还存在影响规划指标科学确定的两方面不足:1)现状绿地指标由于建成区范围、人口和公园绿地等统计口径不统一,导致统计数据有偏差;2)规划绿地指标由于体系层级缺乏、部分指标采用困难等原因,导致“三类”规划成果指标体系不完整,成果质量难以保障。随着中国国土空间规划体系的建立,新出台标准对中心城区边界和建成区范围划定提出了明确规定,虽然从体系层级增加、统计口径统一等方面为解决城乡规划体系中城市绿地指标存在的短板问题提供了契机,但城市绿地指标体系仍不完整。基于此提出国土空间规划体系下城市绿地指标适应性融合的研究思路,以及“统筹互补-增加层级-无缝对接-绿线划定-固化地位”的技术路径和“五方面十四条”适应性融合策略,整体构建市县级国土空间“三类”规划中的城市绿地指标体系,以期为“三类”规划编制提供参考。 展开更多
关键词 风景园林 市县级国土空间“三类”规划 城市绿地 指标体系 适应融合策略
在线阅读 下载PDF
基于特征融合与域自适应的刀具磨损在线监测
5
作者 柳大虎 汪永超 何欢 《组合机床与自动化加工技术》 北大核心 2024年第8期121-126,133,共7页
机床状态监测对于机床健康管理以及保证工件加工质量具有重要意义。针对现有刀具磨损预测模型存在训练时间长、收敛速度慢以及泛化能力弱等问题,提出了一种分布式一维卷积神经网络对刀具磨损进行预测。采用残差连接与通道注意力模块顺... 机床状态监测对于机床健康管理以及保证工件加工质量具有重要意义。针对现有刀具磨损预测模型存在训练时间长、收敛速度慢以及泛化能力弱等问题,提出了一种分布式一维卷积神经网络对刀具磨损进行预测。采用残差连接与通道注意力模块顺序堆叠的方式作为特征提取模块,并通过交叉验证以选择合适的网络层数。由于不同传感器所提取到的特征信息可能存在冗余,使用权重差异策略以提高特征提取的有效性以及全面性。此外,考虑到训练集与测试集分布可能存在差异从而影响模型的泛化性能,引入了域自适应方法提高模型在未知数据集中的表现。为验证模型效果,使用PHM 2010铣刀磨损数据集进行实验。实验结果表明,该模型在C1、C4、C6三把刀具上的平均RMSE和平均MAE分别为6.97和6.29,与TCN、TDConvLSTM等模型相比有12%以上的提升。 展开更多
关键词 刀具磨损监测 多传感器特征融合 权重差异策略 自适应
在线阅读 下载PDF
自适应特征融合的迭代实体对齐方法
6
作者 李婷婷 邵斐 +1 位作者 温天晓 董飒 《吉林大学学报(理学版)》 CAS 北大核心 2024年第3期629-635,共7页
针对知识图谱实体对齐任务中缺乏训练数据以及长尾实体对齐准确率较低的问题,提出一种基于自适应特征融合策略的迭代实体对齐方法,并设计一种迭代策略自动扩充训练数据的规模.该方法使用知识图谱的结构信息,并利用关系、属性和实体名称... 针对知识图谱实体对齐任务中缺乏训练数据以及长尾实体对齐准确率较低的问题,提出一种基于自适应特征融合策略的迭代实体对齐方法,并设计一种迭代策略自动扩充训练数据的规模.该方法使用知识图谱的结构信息,并利用关系、属性和实体名称信息作为语义信息辅助对齐,从而提升对齐效果.在数据集上的实验结果表明,该模型在知识图谱实体对齐任务中效果良好. 展开更多
关键词 知识图谱 实体对齐 迭代策略 自适应特征融合
在线阅读 下载PDF
基于可变形卷积和自适应空间特征融合的硬币表面缺陷检测算法 被引量:7
7
作者 王品学 张绍兵 +2 位作者 成苗 何莲 秦小山 《计算机应用》 CSCD 北大核心 2022年第2期638-645,共8页
针对硬币表面缺陷较小、形状多变且易与背景混淆而不易检出的问题,改进YOLOv3算法并提出基于可变形卷积和自适应空间特征融合的硬币表面缺陷检测算法DCA-YOLO。首先,由于缺陷形状的多变设计了3种在主干网络中不同位置添加可变形卷积模... 针对硬币表面缺陷较小、形状多变且易与背景混淆而不易检出的问题,改进YOLOv3算法并提出基于可变形卷积和自适应空间特征融合的硬币表面缺陷检测算法DCA-YOLO。首先,由于缺陷形状的多变设计了3种在主干网络中不同位置添加可变形卷积模块的网络结构,通过卷积学习偏移量和调节参数来提高缺陷的提取能力;然后,使用自适应空间特征融合网络学习权重参数来调整不同尺度特征图中各像素点的贡献度以更好地适应不同尺度的目标;最后,改进先验锚框比例,动态调节类别权重,优化并对比网络性能,从而提出在主干网络输出特征进行多尺度融合的上采样前增加可变形卷积的模型网络。实验结果表明,在硬币缺陷数据集上,DCA-YOLO算法检测平均精度均值(mAP)接近于Faster-RCNN,达到了92.8%;而相较于YOLOv3,所提算法的检测速度基本持平,在检测mAP上提高了3.3个百分点,F1分数提升了3.2个百分点。 展开更多
关键词 YOLOv3算法 硬币 表面缺陷检测 可变形卷积 自适应空间特征融合
在线阅读 下载PDF
基于HHT和CSSD的多域融合自适应脑电特征提取方法 被引量:36
8
作者 李明爱 崔燕 +1 位作者 杨金福 郝冬梅 《电子学报》 EI CAS CSCD 北大核心 2013年第12期2479-2486,共8页
为改善运动想象脑电信号特征提取的自适应性和实时性,提出一种基于希尔伯特-黄变换(HHT)与共空域子空间分解算法(CSSD)的特征提取方法(HCSSD).在对脑电信号进行预处理的基础上,定义一种相对距离准则优选脑电极组合;计算脑电的Hilbert瞬... 为改善运动想象脑电信号特征提取的自适应性和实时性,提出一种基于希尔伯特-黄变换(HHT)与共空域子空间分解算法(CSSD)的特征提取方法(HCSSD).在对脑电信号进行预处理的基础上,定义一种相对距离准则优选脑电极组合;计算脑电的Hilbert瞬时能量谱和边际能量谱,以获取脑电的时-频特征,并基于CSSD提取其空域特征,采用串行特征融合策略得到脑电的时-频-空特征;设计学习矢量量化神经网络分类器,实现脑电数据分类.在训练集与测试集间隔一周且减少导联数量的情况下,基于HCSSD对左手小指和舌头的运动想象ECoG脑电数据的平均识别率为92%.实验结果表明:HCSSD在增强特征提取方法的自适应性、改善实时性的同时,提高了脑电信号识别率,为便携式BCI系统在康复领域的应用创造了条件. 展开更多
关键词 脑机接口 运动想象 希尔伯特-黄变换 共空域子空间分解 特征融合 自适应 brain-computer interface (BCI) motor imagery (MI) hilbert-huang transform (HHT) common spatial sub-space decomposition (CSSD )
在线阅读 下载PDF
基于注意力机制及多分支特征融合的实时语义分割算法
9
作者 蒋锐 陈儒娜 +2 位作者 王小明 李大鹏 徐友云 《南京邮电大学学报(自然科学版)》 北大核心 2024年第2期91-100,共10页
为了合理平衡语义分割中的精确度与实时性,基于快速卷积神经网络模型(Fast-SCNN)提出了一种基于注意力机制及多分支特征融合的实时语义分割算法模型。该算法模型首先通过注意力模块捕获空间特征之间的相互联系,增强空间细节信息;然后合... 为了合理平衡语义分割中的精确度与实时性,基于快速卷积神经网络模型(Fast-SCNN)提出了一种基于注意力机制及多分支特征融合的实时语义分割算法模型。该算法模型首先通过注意力模块捕获空间特征之间的相互联系,增强空间细节信息;然后合理设计融合模块,最大化利用各分支信息,实现深层特征与浅层特征更好的融合;最后引入自适应特征增强注意力模块,捕获长距离像素间的相互依赖关系。实验结果表明,文中算法模型在Cityscapes数据集上获得了71.55%的分割精度,推理速度FPS达到97.6帧/s,模型参数量为1.39 M,验证了该算法所构成网络模型的有效性。 展开更多
关键词 实时语义分割 通道注意力 空间注意力 特征融合 自适应注意力
在线阅读 下载PDF
基于IHS变换与自适应区域特征的遥感图像融合算法 被引量:12
10
作者 白鑫 卫琳 《电子测量与仪器学报》 CSCD 北大核心 2019年第2期161-167,共7页
当前较多遥感图像融合算法主要通过独立像素点的像素特征来完成图像子带的融合,忽略了图像子带的区域相关性,导致融合图像存在不连续以及模糊效应等不足。因此,设计了IHS变换耦合自适应区域特征的遥感图像融合算法。引入IHS(intensity, ... 当前较多遥感图像融合算法主要通过独立像素点的像素特征来完成图像子带的融合,忽略了图像子带的区域相关性,导致融合图像存在不连续以及模糊效应等不足。因此,设计了IHS变换耦合自适应区域特征的遥感图像融合算法。引入IHS(intensity, hue, saturation)变换,对多光谱(MS)图像进行分解获取强度分量,将其与全色(PAN)图像进行融合。再通过非下采样Contourlet变换(NSCT)对PAN图像与强度分量进行子带分解,获取高、低频子带信息。并利用图像的区域能量以及区域空间特征,对低频子带融合模型的调节因子进行自适应整定,使得融合低频子带能够包含更多的空间信息。基于图像的区域方差特征来构建高频子带融合模型,使得融合高频子带能够包含更多的纹理信息。实验结果表明,与当前遥感图像融合算法相比,所提算法的融合图像具有更好地光谱特性以及空间特性。 展开更多
关键词 遥感图像融合 IHS变换 非下采样CONTOURLET变换 区域空间特征 自适应区域特征 子带融合
在线阅读 下载PDF
色度马氏距离图与灰度图特征自适应融合的彩色人脸识别 被引量:4
11
作者 崔法毅 《红外与激光工程》 EI CSCD 北大核心 2015年第4期1382-1389,共8页
色彩提供了比灰度更为丰富的信息,鉴于彩色人脸图像所包含的鉴别信息远多于灰度人脸图像,将色度马氏距离图引入彩色人脸识别中。基于YCb Cr颜色空间,分离彩色人脸图像的色度与亮度信息,构建出基于色度信息的马氏距离图,同时分离出基于... 色彩提供了比灰度更为丰富的信息,鉴于彩色人脸图像所包含的鉴别信息远多于灰度人脸图像,将色度马氏距离图引入彩色人脸识别中。基于YCb Cr颜色空间,分离彩色人脸图像的色度与亮度信息,构建出基于色度信息的马氏距离图,同时分离出基于亮度信息的灰度图。提出一种色度马氏距离图与灰度图特征自适应融合的人脸识别算法。分别构造出色度马氏距离图与灰度图的基于小波包结点能量的归一化特征向量,采用多种融合策略进行特征融合,并根据融合效果自适应地选取特征融合参数,构造出最佳的鉴别特征向量,实现色度与亮度特征的互补。使用基于方差相似度的分类器获得人脸识别结果。实验表明:该算法识别率高、鲁棒性好。 展开更多
关键词 彩色人脸识别 色度马氏距离图 YCBCR颜色空间 小波(包)变换 自适应特征融合
在线阅读 下载PDF
基于自适应融合色度与亮度特征的彩色人脸识别算法 被引量:1
12
作者 崔法毅 《高技术通讯》 CAS CSCD 北大核心 2015年第1期89-96,共8页
鉴于彩色人脸图像所包含的鉴别信息远多于灰度人脸图像,将色度马氏距离图引入彩色人脸识别中,提出了一种基于自适应融合色度与亮度特征的彩色人脸识别算法。该算法基于YDhDr颜色空间分离彩色人脸图像的色度与亮度信息,构建出基于色度信... 鉴于彩色人脸图像所包含的鉴别信息远多于灰度人脸图像,将色度马氏距离图引入彩色人脸识别中,提出了一种基于自适应融合色度与亮度特征的彩色人脸识别算法。该算法基于YDhDr颜色空间分离彩色人脸图像的色度与亮度信息,构建出基于色度信息的马氏距离图,同时分离出基于亮度信息的灰度图;通过自适应融合色度与亮度特征来构建彩色人脸识别特征;基于小波包结点能量的特征表示方法,分别在实数域和复数域中提取并融合色度与亮度分量的最崖鉴别特征向量,实现色度与亮度特征的最优化互补;使用基于方差相似度的分类器获得人脸识别结果。实验表明,该算法识别率高、鲁棒性好。 展开更多
关键词 彩色人脸识别 色度马氏距离图 YDbDr颜色空间 小波包变换 自适应特征 融合
在线阅读 下载PDF
多尺度增强特征融合的钢表面缺陷目标检测 被引量:3
13
作者 林珊玲 彭雪玲 +3 位作者 王栋 林志贤 林坚普 郭太良 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1075-1086,共12页
针对轻量级目标检测算法在钢表面缺陷检测任务中识别精度低的问题,提出一种多尺度增强特征融合的钢表面缺陷目标检测算法。该算法采用提出的自适应加权融合模块为不同层级特征自适应计算融合权重,将深层语义与浅层细节进行加权融合,使... 针对轻量级目标检测算法在钢表面缺陷检测任务中识别精度低的问题,提出一种多尺度增强特征融合的钢表面缺陷目标检测算法。该算法采用提出的自适应加权融合模块为不同层级特征自适应计算融合权重,将深层语义与浅层细节进行加权融合,使得浅层特征在不丢失细节信息的同时获得丰富的深层语义。利用提出的空间特征增强模块从3个独立方向强化融合特征,通过引出残差旁路增强网络结构的稳定性,使卷积过程能够挖掘到更多的关键信息。根据先验框与真实框的整体交并程度为模型选择更为合适的训练样本。实验结果表明,该算法的检测精度达到80.47%,相比原始算法提升6.81%。该算法的参数量为2.36 M,计算量为952.67 MFLOPs,能快速且高精度检测钢材表面的缺陷信息,具有较高的应用价值。 展开更多
关键词 缺陷检测 单发多框检测器 增强特征融合 自适应加权融合 空间特征增强
在线阅读 下载PDF
基于颜色和空间信息的多特征融合目标跟踪算法 被引量:9
14
作者 许婉君 侯志强 +1 位作者 余旺盛 张浪 《应用光学》 CAS CSCD 北大核心 2015年第5期755-761,共7页
为解决单一特征目标跟踪鲁棒性较差的问题,提出一种基于颜色和空间信息的多特征融合目标跟踪算法。采用一种自适应划分颜色区间的方法提取目标颜色特征,利用空间直方图提取目标颜色的空间分布信息。在粒子滤波框架下将自适应颜色直方图... 为解决单一特征目标跟踪鲁棒性较差的问题,提出一种基于颜色和空间信息的多特征融合目标跟踪算法。采用一种自适应划分颜色区间的方法提取目标颜色特征,利用空间直方图提取目标颜色的空间分布信息。在粒子滤波框架下将自适应颜色直方图和空间直方图相结合,在特征融合中引入特征不确定性度量方法,自适应调整不同特征对跟踪结果的贡献,提高算法的鲁棒性。仿真实验结果表明,该跟踪算法平均位置最小误差值仅6.967像素,而单一特征跟踪算法以及传统融合算法的跟踪误差达192.576像素和199.464像素。说明本文算法在跟踪准确性上优于单一特征跟踪算法及传统融合算法,具有更好的跟踪精度和更高的鲁棒性。 展开更多
关键词 目标跟踪 自适应颜色直方图 空间直方图 特征融合
在线阅读 下载PDF
融合全局增强-局部注意特征的表情识别网络 被引量:3
15
作者 刘娟 王颖 +1 位作者 胡敏 黄忠 《计算机科学与探索》 CSCD 北大核心 2024年第9期2487-2500,共14页
为抑制自然场景下遮挡和姿态变化等因素对人脸表情识别的影响,提出一种融合全局增强-局部注意特征(GE-LA)的表情识别网络。为获取增强的全局上下文信息,构建通道-空间全局特征增强结构,该结构采用通道流模块(CFM)和空间流模块(SFM),分... 为抑制自然场景下遮挡和姿态变化等因素对人脸表情识别的影响,提出一种融合全局增强-局部注意特征(GE-LA)的表情识别网络。为获取增强的全局上下文信息,构建通道-空间全局特征增强结构,该结构采用通道流模块(CFM)和空间流模块(SFM),分别获取对称多尺度通道语义以及像素级空间语义,并结合两类语义生成全局增强特征;为抽取局部细节特征,将高效通道注意力(ECA)机制改进为通道-空间注意力(CSA)机制,并以此构建局部注意模块(LAM)获取通道和空间高级语义。为提升网络对遮挡、姿态变化等因素的抗干扰能力,设计一种自适应策略实现全局增强特征和局部注意特征的加权融合,并基于自适应融合特征实现表情分类。在自然场景人脸表情数据集RAF-DB和FERPlus上的实验结果表明,提出网络的表情识别率分别为89.82%和89.93%,比基线网络ResNet50分别提高了13.39个百分点和10.62个百分点。与相关方法相比,提出方法降低了遮挡、姿态变化的影响,在自然场景下具有较好的表情识别效果。 展开更多
关键词 人脸表情识别 全局增强特征 局部注意特征 自适应融合策略
在线阅读 下载PDF
自适应跟踪与多特征融合的目标跟踪算法 被引量:2
16
作者 王子超 崔荣成 +2 位作者 温蜜 张凯 何蔚 《计算机工程与设计》 北大核心 2021年第10期2844-2851,共8页
Staple算法采用固定权重与学习率的方式,导致其在物体模糊等场景下跟踪精度低。为此,提出一种自适应跟踪与多特征融合的目标跟踪算法(adp-Staple)。特征融合与跟踪过程中引入两种不同置信因子提升跟踪精度,特征提取过程引入主成分分析... Staple算法采用固定权重与学习率的方式,导致其在物体模糊等场景下跟踪精度低。为此,提出一种自适应跟踪与多特征融合的目标跟踪算法(adp-Staple)。特征融合与跟踪过程中引入两种不同置信因子提升跟踪精度,特征提取过程引入主成分分析降维技术提升跟踪速度。在OTB-50与OTB-100数据集上进行对比实验,其结果表明,adp-Staple算法较传统Staple算法有更好的跟踪效果,在运动模糊等场景中有更强的鲁棒性。 展开更多
关键词 目标跟踪 相关滤波 Staple算法 自适应跟踪策略 自适应特征融合
在线阅读 下载PDF
基于航拍图像的自适应感知目标检测网络
17
作者 袁玲玲 陈春梅 +2 位作者 朱天鑫 邓豪 刘桂华 《电子测量技术》 北大核心 2025年第2期57-65,共9页
由于无人机拍摄高度和角度的多样性,其图像往往呈现背景复杂且小目标居多的特征,这导致了相关检测算法性能较差。针对此问题,本文提出了一种基于自适应感知网络的航拍图像车辆检测方法,旨在从提高车辆特征显著度和改善特征信息损失两个... 由于无人机拍摄高度和角度的多样性,其图像往往呈现背景复杂且小目标居多的特征,这导致了相关检测算法性能较差。针对此问题,本文提出了一种基于自适应感知网络的航拍图像车辆检测方法,旨在从提高车辆特征显著度和改善特征信息损失两个方面来提升小目标的检测性能。首先,为了提取更高效的特征表征,提出了自适应感知特征提取模块,该模块通过捕捉长程依赖关系和更强的几何特征表示,能够自适应地对物体的形状进行建模。其次,为了减少下采样和连续池化造成的信息损失,设计了双分支空间感知下采样模块,该模块混合不同通道的特征图,以最大限度地保留小目标特征信息。然后,在特征融合网络中,引入了具有丰富空间信息的浅层特征图,以增强小目标的检测能力。最后,设计了新的动态回归损失函数DEIoU,该函数引入惩罚项来度量真实框与检测框之间横纵比的相关性,从而进一步提高网络的预测精度。在Visdrone数据集上的实验结果表明,所提方法的平均精度均值mAP达到了70%,推理速度达到了99.26 fps,实现了较好的速度与精度的平衡,并且所提方法在UCAS-AOD数据集上取得了最佳的检测精度,具有较强的泛化能力。 展开更多
关键词 无人机 目标检测 自适应感知特征提取 特征融合网络 双分支空间感知下采样
在线阅读 下载PDF
多尺度特征自适应融合的轻量化织物瑕疵检测 被引量:12
18
作者 杨毅 桑庆兵 《计算机工程》 CAS CSCD 北大核心 2022年第12期288-295,共8页
织物瑕疵检测是纺织行业保证产品质量的重要环节,针对织物瑕疵检测中存在小目标瑕疵检测困难、不同种类瑕疵长宽比差异大、对实时性要求高等问题,提出一种新的轻量化织物瑕疵检测算法。以YOLOv4网络为基础,使用轻量化网络MobileNetv2为... 织物瑕疵检测是纺织行业保证产品质量的重要环节,针对织物瑕疵检测中存在小目标瑕疵检测困难、不同种类瑕疵长宽比差异大、对实时性要求高等问题,提出一种新的轻量化织物瑕疵检测算法。以YOLOv4网络为基础,使用轻量化网络MobileNetv2为主干网络,有效减少模型参数总量与运算量,以满足实时性需求。在MobileNetv2的逆残差结构中加入CoordAttention注意力模块,将空间精确位置信息嵌入到通道注意力中,增强网络聚焦小目标特征的能力。使用自适应空间特征融合(ASFF)网络改进路径聚合网络(PANet),使模型通过学习获得多尺度特征图的融合权重,从而充分利用浅层特征与深层特征,提高算法对小目标瑕疵的检测精度。采用K-means++算法确定先验框尺寸,并用Focal Loss函数修改模型损失函数,降低正、负样本不平衡对检测结果的影响,解决不同种类瑕疵长宽比差异大及类别不平衡的问题。实验结果表明,相较于YOLOv4算法,所提算法的平均精度均值提高了2.3个百分点,检测速度提升了12 frame/s,能较好地应用于织物瑕疵检测。 展开更多
关键词 织物瑕疵检测 自适应空间特征融合 CoordAttention模块 YOLOv4网络 MobileNetv2网络
在线阅读 下载PDF
基于窗口自注意力网络与YOLOv5融合的输电线路通道异物检测 被引量:2
19
作者 薛昂 姜恩宇 +2 位作者 张文涛 林顺富 米阳 《上海交通大学学报》 北大核心 2025年第3期413-423,共11页
针对输电线路通道异物检测背景复杂以及小目标情况下检测效果不佳等问题,提出一种基于窗口自注意力网络与YOLOv5模型融合的输电线路通道安全检测算法.首先,选用窗口自注意力(S-T)网络优化主干网络,扩大模型感受视野,增强提取有效信息的... 针对输电线路通道异物检测背景复杂以及小目标情况下检测效果不佳等问题,提出一种基于窗口自注意力网络与YOLOv5模型融合的输电线路通道安全检测算法.首先,选用窗口自注意力(S-T)网络优化主干网络,扩大模型感受视野,增强提取有效信息的能力.其次,改进自适应空间特征融合(ASFF)模块,增强多尺度特征融合能力.最后,考虑到真实框与预测框不匹配的问题,引入结构相似性交并比(SIoU),优化边界误差,提高小目标定位准确性.实验结果表明,本文模型对线路通道多目标入侵检测精度达到90.2%,且提升了小目标检测效果;与主流目标检测算法相比,可以更好地满足输电线路通道中的异物检测需求. 展开更多
关键词 智能化巡检 输电线路通道 目标检测 窗口自注意力网络 自适应空间特征融合
在线阅读 下载PDF
双分支跨级特征融合的自然场景文本检测 被引量:1
20
作者 刘光辉 张钰敏 +1 位作者 孟月波 占华 《智能系统学报》 CSCD 北大核心 2023年第5期1079-1089,共11页
现有的场景文本检测方法在处理任意形状文本时,由于复杂背景的影响会造成文本区域定位不准确、相邻文本漏检误检的问题,基于此提出一种双分支跨级特征融合的自然场景文本检测方法。首先,以Resnet50为主干网络提取初始特征,设计跨级特征... 现有的场景文本检测方法在处理任意形状文本时,由于复杂背景的影响会造成文本区域定位不准确、相邻文本漏检误检的问题,基于此提出一种双分支跨级特征融合的自然场景文本检测方法。首先,以Resnet50为主干网络提取初始特征,设计跨级特征分布增强模块(cross-level feature distribution enhancement module,CFDEM),增强跨级特征文本信息的交互性,提高特征的表达能力;然后,为自适应地选择过滤非文本或冗余特征,降低误检率和漏检率,提出自适应融合策略(adaptive fusion strategy,AFS),利用双分支结构加强不同维度特征之间的联系,优化融合过程;最后,预测阶段采用可微分二值化的方法来生成文本检测结果。所提方法在ICDAR2015、ICDAR2017、Total-Text、CTW1500数据集上进行消融实验,实验结果表明该方法能准确定位文本区域,克服文本漏检误检影响。 展开更多
关键词 文本检测 任意形状 跨级特征分布增强 自适应融合 双分支 空间维度 通道维度 可微分二值化
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部