期刊文献+
共找到365篇文章
< 1 2 19 >
每页显示 20 50 100
基于多尺度自适应时空图卷积网络与BERT模型的多节点短期负荷预测
1
作者 吴兴扬 戴剑丰 《电网技术》 北大核心 2025年第9期3756-3766,I0072-I0075,共15页
“双碳”目标旨在推动能源转型与减排,新型电力系统作为关键,促进清洁能源接入与利用,减碳效果显著。但其多元化负荷结构增大了预测难度。为应对“双碳”要求,解决新型电力系统中多节点负荷预测的复杂时空依赖性和非线性问题,文章提出... “双碳”目标旨在推动能源转型与减排,新型电力系统作为关键,促进清洁能源接入与利用,减碳效果显著。但其多元化负荷结构增大了预测难度。为应对“双碳”要求,解决新型电力系统中多节点负荷预测的复杂时空依赖性和非线性问题,文章提出了一种基于多尺度自适应时空图卷积网络(adaptive spatio-temporal graph convolutional network,ASTGCN)与基于Transformer的双边编码器表示(bidirectional encoder representations from transformers,BERT)模型的多节点短期负荷预测方法。首先,采用Prophet算法对负荷数据进行拟合分解,获取不同尺度下的负荷数据分量,并与强相关的天气数据共同构建多元数据集;其次,引入可膨胀的滑动时空窗口和时空图卷积算子构建ASTGCN,同时捕捉空间和时间上的复杂依赖关系,并引入BERT模型对时间序列数据进行编码,利用其强大的处理能力来捕捉负荷数据中的长期依赖性;最后,用门控融合网络对两个模型进行融合。基于美国纽约州的公开数据集进行测试,单日和单周的测试结果均表明所提模型不仅能有效挖掘节点的耦合特性,还能补充挖掘中长期时序特征,并显著提升预测精度,降低预测误差。 展开更多
关键词 Prophet算法 自适应时空图卷积网络 BERT 门控融合网络 多节点负荷预测
在线阅读 下载PDF
基于自适应时空图卷积网络的航空发动机剩余寿命预测
2
作者 许丹阳 尚洁 +2 位作者 蒋琛 邱浩波 高亮 《计算机集成制造系统》 北大核心 2025年第6期2165-2177,共13页
为了深入挖掘传感器监测信号的时间域和空间域特征,全面反映健康状态进而提高故障预测精度,提出一种基于自适应时空图卷积网络(ASTGCN)的航空发动机剩余使用寿命(RUL)预测方法。首先以基于互信息的静态邻接矩阵为基础,结合参数可学习的... 为了深入挖掘传感器监测信号的时间域和空间域特征,全面反映健康状态进而提高故障预测精度,提出一种基于自适应时空图卷积网络(ASTGCN)的航空发动机剩余使用寿命(RUL)预测方法。首先以基于互信息的静态邻接矩阵为基础,结合参数可学习的动态邻接矩阵表示方法建立自适应邻接矩阵,自动调整传感器节点的空间关联,高质量构建航空发动机健康监测场景下的图结构数据;其次建立时空图卷积网络模块,分别利用一维和图卷积网络同步学习监测信号的时间和空间依赖关系,捕捉监测数据的动态时空相关性;最后将全连接层用于退化特征融合和RUL预测。采用公开的航空发动机退化数据集验证了ASTGCN的有效性和先进性。 展开更多
关键词 航空发动机 剩余使用寿命预测 数据驱动 时空图卷积网络 自适应邻接矩阵
在线阅读 下载PDF
基于时空图卷积网络与多层次特征融合的快递员3D人体姿态估计
3
作者 丁德波 史耀群 《传感技术学报》 北大核心 2025年第8期1457-1462,共6页
将快递员的人体动作数字化,赋能物流行业的智能化转型,从提升效率、保障健康到推动人机协作,具有广泛的应用潜力。提出了一种新方法,融合了时空图卷积网络与多层次特征融合技术。该方法首先利用时空图卷积网络对人体骨架序列进行建模,... 将快递员的人体动作数字化,赋能物流行业的智能化转型,从提升效率、保障健康到推动人机协作,具有广泛的应用潜力。提出了一种新方法,融合了时空图卷积网络与多层次特征融合技术。该方法首先利用时空图卷积网络对人体骨架序列进行建模,有效提取关节间的空间关系及时序依赖性。接着,通过引入多层次特征融合模块,融合来自不同网络层的特征信息,包括低层次的细节特征和高层次的抽象特征,从而更全面地捕捉快递员的人体关节动态变化和运动模式。为了验证所提方法的性能,在公开数据集Human3.6M上进行了实验。该数据集由视觉传感器采集得到,包含了丰富的人体姿态信息。仿真实验结果表明,所提出的方法能够显著提高三维姿态估计的精度。 展开更多
关键词 三维人体姿态估计 时空图卷积网络 多层次特征融合
在线阅读 下载PDF
基于多头注意力时空图卷积网络的交通事故预测
4
作者 姜天豪 王瑞 《上海大学学报(自然科学版)》 北大核心 2025年第4期678-690,共13页
提出一种结合多头注意力(multi-head attention, MHA)机制和自适应邻接矩阵的新型时空图卷积网络(spatio-temporal graph convolutional network, STGCN)模型. MHA机制对时空特征和外部环境因素进行加权融合,自适应邻接矩阵对道路网络... 提出一种结合多头注意力(multi-head attention, MHA)机制和自适应邻接矩阵的新型时空图卷积网络(spatio-temporal graph convolutional network, STGCN)模型. MHA机制对时空特征和外部环境因素进行加权融合,自适应邻接矩阵对道路网络的连接权重进行动态调整,提升了对空间依赖性的刻画能力.结果表明,该模型在伦敦道路网络数据集上的表现优于已有模型,在多个指标上显著提升了预测精度. 展开更多
关键词 交通事故预测 时空图卷积网络 多头注意力机制 自适应邻接矩阵
在线阅读 下载PDF
基于动态混合时空图卷积网络的轨道交通站点短时客流预测模型
5
作者 谢余晨 杨静 +2 位作者 李欣然 张红亮 周浪雅 《铁道运输与经济》 北大核心 2025年第10期130-140,共11页
城市轨道交通站点短时客流预测是交通管理和人群调控的关键环节。为解决捕获客流动态空间相关性时存在的复杂度高及过拟合问题,提出一种基于Tucker张量分解的动态混合时空图卷积网络模型。该模型由多个时间注意力模块与混合图卷积模块... 城市轨道交通站点短时客流预测是交通管理和人群调控的关键环节。为解决捕获客流动态空间相关性时存在的复杂度高及过拟合问题,提出一种基于Tucker张量分解的动态混合时空图卷积网络模型。该模型由多个时间注意力模块与混合图卷积模块交替堆叠构成,分别进行时间和空间特征的学习。其中混合图卷积模块融合预定义静态图卷积与动态图卷积,预定义图反映站点间的物理连通关系,动态图卷积采用基于Tucker分解生成的动态邻接矩阵,通过在不同层间共享邻接矩阵的方法,高效学习站间的动态空间关系,将计算复杂度从O(T×N^(2))降为O(N×d),同时有效解决过拟合问题。实验结果表明,研究设计的模型在北京、上海、杭州3个真实数据集上的预测精度优于现有方法;在客流变化趋势明显,特别是有潮汐现象的站点表现更好;动态混合时空图卷积网络模型中的动态邻接矩阵能够自适应捕捉动态空间相关性;动态图卷积与混合图卷积模块在模型性能提升中具有关键作用。 展开更多
关键词 城市轨道交通 短时客流预测 动态时空图卷积网络 Tucker分解 图神经网络
在线阅读 下载PDF
基于时空图卷积网络的有源配电网故障定位方法
6
作者 徐彦彬 高学军 +3 位作者 曾祥军 王灿 余波 李瑞灵 《现代电子技术》 北大核心 2025年第20期105-112,共8页
针对有源配电网因拓扑结构复杂、潮流方向多变等特点导致故障定位难的问题,文章结合配电网故障信息的时空相关性,提出一种基于时空图卷积网络的有源配电网故障定位方法。首先通过模态分解获取故障特征较为丰富的电压分量并进行重构;然... 针对有源配电网因拓扑结构复杂、潮流方向多变等特点导致故障定位难的问题,文章结合配电网故障信息的时空相关性,提出一种基于时空图卷积网络的有源配电网故障定位方法。首先通过模态分解获取故障特征较为丰富的电压分量并进行重构;然后采用希尔伯特变换提取电压幅频特征,并结合配电网拓扑信息构建图数据;最后利用该网络中的时空卷积模块提取与融合电压的幅频特征,并由输出层得到图中各节点的故障指数,以实现故障定位。仿真结果表明,所提方法通过学习配电网各节点故障信息的时空特征,在不同故障场景下表现出较高的可靠性和泛化性,并在数据干扰的情况下表现出较强的鲁棒性。 展开更多
关键词 有源配电网 时空图卷积网络 故障定位 时空相关性 模态分解 希尔伯特变换
在线阅读 下载PDF
基于时空图卷积网络的矿区人员健康状态识别算法
7
作者 王惠伟 周超逸 +2 位作者 张兰峰 孙延钊 刘娜 《金属矿山》 北大核心 2025年第2期206-210,共5页
随着矿区工作环境的复杂化和危险性增加,实现矿区人员健康状态准确监测和识别很有必要。然而,传统的健康状态识别方法通常依赖于手工提取的特征信息,忽略了矿区人员的时空关系和动态变化。为此,提出了一种基于时空图卷积网络的矿区人员... 随着矿区工作环境的复杂化和危险性增加,实现矿区人员健康状态准确监测和识别很有必要。然而,传统的健康状态识别方法通常依赖于手工提取的特征信息,忽略了矿区人员的时空关系和动态变化。为此,提出了一种基于时空图卷积网络的矿区人员健康状态识别算法。该算法首先利用时空图卷积网络对矿区人员的骨架数据进行特征提取,同时考虑了人员之间的拓扑结构和时间序列的变化;然后采用长短期记忆网络(Long Short-Term Mem-ory,LSTM)对提取的特征进行序列建模;最后通过全连接层进行健康状态分类。在实际矿区人员健康状态数据集上进行了试验,结果表明:所提算法在健康状态识别的准确率和F1值等指标上均优于支持向量机(Support Vector Ma-chine,SVM)、长短期记忆网络(LSTM)、图卷积网络(Graph Convolutional Network,GCN)、动态卷积网络(Dynamic Graph Convolutional Network,DGCN)等算法,证明了该算法的有效性和可行性。 展开更多
关键词 矿山安全 健康状态识别 时空图卷积网络 长短期记忆网络
在线阅读 下载PDF
基于多源异构融合与时空图卷积网络的集卡到港量预测模型
8
作者 薛桂香 陈宇昂 +2 位作者 刘瑜 郑倩 宋建材 《计算机工程与科学》 北大核心 2025年第3期561-570,共10页
及时准确的集卡到港量预测算法对于港口物流系统的调度优化和资源分配至关重要。由于集卡到港量受到临港路段交通情况、天气和港口作业计划等多种复杂因素影响而表现出高度非线性和复杂性特征,传统交通流量预测方法难以有效融合内、外... 及时准确的集卡到港量预测算法对于港口物流系统的调度优化和资源分配至关重要。由于集卡到港量受到临港路段交通情况、天气和港口作业计划等多种复杂因素影响而表现出高度非线性和复杂性特征,传统交通流量预测方法难以有效融合内、外部因素的影响并准确提取其时空相关性。针对这一问题,提出了一种基于多源异构数据融合和时空图卷积网络的混合集卡到港量预测模型MHF-STGCN,该模型采用注意力机制自适应提取港口交通流多源异构历史数据的关键信息并挖掘其动态时空演化特征。与单一交通数据相比,多源数据融合使模型MAE下降约34.99%,RMSE下降约31.10%,详细对比实验结果表明该模型在MAE、RMSE和R-Square等指标上显著优于基线模型。 展开更多
关键词 智慧港口 交通流量预测 多源异构数据融合 时空图卷积网络
在线阅读 下载PDF
基于改进时空图卷积网络的综合能源系统超短期联合预测方法
9
作者 龚钢军 蔡贺 +3 位作者 杨德龙 傅思敏 车赵晗 马天辰 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期1-12,23,I0002,共14页
面向综合能源系统中多元负荷和可再生能源出力以及天气因素之间复杂耦合关系的挖掘需求,本文提出一种基于改进时空图卷积网络的综合能源系统超短期联合预测方法。首先,将综合能源系统中的多元负荷、可再生能源出力、天气因素均映射为图... 面向综合能源系统中多元负荷和可再生能源出力以及天气因素之间复杂耦合关系的挖掘需求,本文提出一种基于改进时空图卷积网络的综合能源系统超短期联合预测方法。首先,将综合能源系统中的多元负荷、可再生能源出力、天气因素均映射为图结构数据形式,采用最大信息系数计算各输入变量间的相关性,将其作为节点相连边的加权值构造邻接矩阵;其次,在对时空图卷积运算改进的基础上简化了模型的参数结构;最后,建立基于Seq2Seq架构的改进时空图卷积网络模型,引入自回归层改善了非线性部分对于输入数据的敏感度。仿真结果说明相对于其它模型,本文所提模型在综合能源系统的超短期预测方面具有更佳的预测性能。 展开更多
关键词 综合能源系统 多元负荷预测 可再生能源出力预测 时空图卷积网络 最大信息系数 联合预测
在线阅读 下载PDF
基于双注意力时空图卷积神经网络的4D轨迹预测方法
10
作者 匡育衡 王正宁 +2 位作者 王正 石镇瑜 张毓丁 《电子科技大学学报》 北大核心 2025年第5期641-651,共11页
近年来,4D轨迹预测在空中交通管理系统中的重要性正在逐渐增加,以其为核心技术的冲突检测和解决、飞机异常行为监测、密集飞行区域管控等任务的智能化需求也在逐年上升。机场终端区和密集空域的状况错综复杂且不断变化,现有的方法无法... 近年来,4D轨迹预测在空中交通管理系统中的重要性正在逐渐增加,以其为核心技术的冲突检测和解决、飞机异常行为监测、密集飞行区域管控等任务的智能化需求也在逐年上升。机场终端区和密集空域的状况错综复杂且不断变化,现有的方法无法充分捕捉这两个场景下飞机之间的相互作用关系。为了应对这些挑战,提出了基于双注意力的时空图卷积神经网络模型来充分提取飞机之间的潜在时空相关性。该模型利用自注意力机制对邻接矩阵进行重构以便更好地捕捉图节点之间的相关性,并通过图注意力计算提取节点之间的时空特征,最终生成预测轨迹的概率分布。实验结果表明,与现有主流算法相比,利用自注意力机制重构的邻接矩阵和图注意力网络可以随着网络训练不断地优化,从而更好地反应节点之间的潜在关联,提升了4D轨迹预测结果的准确率。 展开更多
关键词 4D轨迹预测 时空图卷积神经网络 自注意力机制 深度学习
在线阅读 下载PDF
基于深度子领域适应卷积神经网络的结构损伤识别 被引量:1
11
作者 张健飞 曹雨 《振动与冲击》 北大核心 2025年第3期251-260,共10页
针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结... 针对卷积神经网络(convolutional neural networks,CNN)结构损伤识别模型泛化能力差的问题,提出了一种基于深度子领域适应卷积神经网络(deep subdomain adaptation convolutional neural networks,DSACNN)的结构损伤识别方法。以实际结构为目标域,以有限元模型为源域,根据损伤类别将源域和目标域划分成一系列子领域。在CNN中嵌入子领域适应模块,构建DSACNN模型,通过最小化源域上的损伤分类误差和领域之间的局部最大均值差异,对齐两个领域对应子领域的特征、建立特征与损伤类别之间的映射,从而将源域上的损伤识别能力迁移到目标域之上。模型的训练无需已知目标域样本的损伤标签,采用预训练全局领域适应提高其伪标签的准确率。试验结果表明:与全局领域适应模型相比,基于预训练全局领域适应的DSACNN模型在模拟目标域上准确率最大提高幅度达到21.8%,在实测目标域上提高了9.6%,具有更强的泛化能力。 展开更多
关键词 结构损伤识别 子领域适应 局部最大均值差异 卷积神经网络(CNN)
在线阅读 下载PDF
一种自适应残差卷积自编码网络及其故障诊断应用
12
作者 潘天成 陈龙 +1 位作者 蒲春雷 陈志强 《机电工程》 北大核心 2025年第3期529-538,共10页
针对传统卷积自编码器(CAE)会将不同故障产生的相似信号进行相同的非线性变换,导致故障诊断准确率下降的问题,提出了一种自适应残差卷积自编码网络(ARCAE),并将其应用于滚动轴承故障诊断中。首先,在残差模块的基础上,引入了自适应参数... 针对传统卷积自编码器(CAE)会将不同故障产生的相似信号进行相同的非线性变换,导致故障诊断准确率下降的问题,提出了一种自适应残差卷积自编码网络(ARCAE),并将其应用于滚动轴承故障诊断中。首先,在残差模块的基础上,引入了自适应参数化修正线性单元(APReLU),建立了自适应残差模块(ARM),ARM可以对相似的输入特征进行自适应非线性变换,避免了特征的错误识别;其次,在CAE中嵌入多级ARM,构建了ARCAE,增加了CAE的深度,提取了更具鉴别性的深层次特征,同时有效防止了网络加深而造成的性能退化;最后,基于ARCAE建立了针对一维信号的故障诊断新方法,将其应用于无监督滚动轴承故障诊断中,并通过两个不同类型的实验,对上述方法的有效性进行了验证。研究结果表明:在恒定转速工况下,ARCAE的诊断准确率最高,平均准确率达到了97.05%,且标准差仅为0.007,远低于其他几种传统CAE网络;在变转速工况下,ARCAE模型诊断准确率仍然是最高的,平均准确率达到了93.25%,由此说明ARCAE具有较高的特征提取能力和分类准确率;此外,变转速工况下,由于转速变化导致不同状态的振动信号特征差异变大,诊断难度加大,但与其他几种传统CAE网络相比,ARCAE诊断准确率下降最少,仅为5.37%,说明ARCAE具有更强的鲁棒性和稳定性。 展开更多
关键词 滚动轴承 自适应残差卷积自编码网络 自适应参数化修正线性单元 自适应残差模块 无监督故障诊断 特征提取
在线阅读 下载PDF
基于动态自适应门控图卷积网络的交通拥堵预测
13
作者 王庆荣 高桓伊 +2 位作者 朱昌锋 何润田 慕壮壮 《华南理工大学学报(自然科学版)》 北大核心 2025年第9期31-47,共17页
随着城市机动车保有量的持续攀升,交通拥堵程度不断加剧,这种现象对环境保护与城市运行效率造成不利影响。因此,精确预测交通拥堵对于交通管理与优化具有重要意义。然而,现有研究在建模交通数据的动态时变特性及复杂路段间交互关系方面... 随着城市机动车保有量的持续攀升,交通拥堵程度不断加剧,这种现象对环境保护与城市运行效率造成不利影响。因此,精确预测交通拥堵对于交通管理与优化具有重要意义。然而,现有研究在建模交通数据的动态时变特性及复杂路段间交互关系方面仍存在一定局限性。针对这一问题,该文提出了一种基于图神经网络的门控时空卷积网络模型,以更有效地刻画和预测交通拥堵状况。首先,通过改进的K-均值聚类算法将原始数据划分为多个拥堵状态类别,并将其作为辅助特征融入预测模型,以增强特征表达能力;然后,引入门控时间卷积网络以捕捉交通数据间的时序特性与动态依赖关系,并构建动态自适应门控图卷积网络,通过信号生成模块与双层调制机制实现特征融合与动态权重分配,从而完成对时空特征的有效提取;最后,引入残差连接以增强训练过程的稳定性,并利用跳跃连接对多层次与多尺度特征进行有效整合。在真实交通数据集PeMS08与PeMS04上对所提模型的有效性进行了验证,结果表明,该模型的预测精度优于其他基线模型。 展开更多
关键词 交通拥堵预测 图神经网络 动态自适应门控 聚类算法 门控时间卷积网络
在线阅读 下载PDF
基于时空图卷积神经网络的强迫振荡定位与传播预测 被引量:6
14
作者 冯双 彭祥佳 +5 位作者 陈佳宁 陆友文 陈力 洪希 雷家兴 汤奕 《中国电机工程学报》 EI CSCD 北大核心 2024年第4期1298-1309,I0005,共13页
振荡源定位与传播预测是抑制强迫振荡和保证电力系统稳定的关键。现有方法未能充分利用电网的空间拓扑信息和振荡的时序特征,限制了定位和预测的精度。因此,该文提出一种基于时空图卷积神经网络的强迫振荡定位与传播预测方法。首先,根... 振荡源定位与传播预测是抑制强迫振荡和保证电力系统稳定的关键。现有方法未能充分利用电网的空间拓扑信息和振荡的时序特征,限制了定位和预测的精度。因此,该文提出一种基于时空图卷积神经网络的强迫振荡定位与传播预测方法。首先,根据节点特征和拓扑信息构建图数据,考虑到强迫振荡传播的快速性,通过切比雪夫多项式扩大节点空间感受野,提取振荡空间特征。同时,利用门控循环单元网络提取多个节点振荡数据的时序关联,通过时空图卷积单元融合空间和时序特征。然后,将定位与传播预测分别建模为分类和回归问题,训练时空图卷积神经网络模型。算例分析表明,所提方法具有更高的准确率,且在噪声和部分节点数据缺失的情况下依然具有较好的性能。 展开更多
关键词 强迫振荡 振荡源定位 振荡传播 时空图卷积神经网络
在线阅读 下载PDF
基于双流自适应时空增强图卷积网络的手语识别 被引量:2
15
作者 金彦亮 吴筱溦 《应用科学学报》 CAS CSCD 北大核心 2024年第2期189-199,共11页
针对提取手语特征过程中出现的信息表征能力差、信息不完整问题,设计了一种双流自适应时空增强图卷积网络(two-stream adaptive enhanced spatial temporal graph convolutional network,TAEST-GCN)实现基于孤立词的手语识别。该网络使... 针对提取手语特征过程中出现的信息表征能力差、信息不完整问题,设计了一种双流自适应时空增强图卷积网络(two-stream adaptive enhanced spatial temporal graph convolutional network,TAEST-GCN)实现基于孤立词的手语识别。该网络使用人体身体、手部和面部节点作为输入,构造基于人体关节和骨骼的双流结构。通过自适应时空图卷积模块生成不同部位之间的连接,并充分利用其中的位置和方向信息。同时采用残差连接方式设计自适应多尺度时空注意力模块,进一步增强该网络在空域和时域的卷积能力。将双流网络提取到的有效特征进行加权融合,可以分类输出手语词汇。最后在公开的中文手语孤立词数据集上进行实验,在100类词汇和500类词汇分类任务中准确率达到了95.57%和89.62%。 展开更多
关键词 骨架数据 双流结构 自适应时空图卷积模块 自适应多尺度时空注意力模块 特征融合
在线阅读 下载PDF
交通速度预测时空图卷积网络及其FPGA实现研究 被引量:2
16
作者 谭会生 杨威 严舒琪 《电子测量技术》 北大核心 2024年第18期108-119,共12页
时空图卷积网络(STGCN)通过图卷积和时间卷积捕获交通数据的空间依赖性和时间依赖性,可有效提升交通速度预测的精度。但是硬件实现交通速度预测STGCN具有计算量大难以满足实际应用的实时性要求、资源消耗大导致成本增高等问题,在优化交... 时空图卷积网络(STGCN)通过图卷积和时间卷积捕获交通数据的空间依赖性和时间依赖性,可有效提升交通速度预测的精度。但是硬件实现交通速度预测STGCN具有计算量大难以满足实际应用的实时性要求、资源消耗大导致成本增高等问题,在优化交通速度预测STGCN模型基础上,提出了一种交通速度预测STGCN的FPGA实现结构组合优化的方法。首先,通过轻量化裁剪和预测数据位宽的精确选择,对交通速度预测STGCN进行了模型优化,以降低计算复杂度和资源消耗,并经过Python仿真验证其可行性。其次,通过采用流水线、并行计算和数据交替流水存取等组合优化策略,提出了一种交通速度预测STGCN的FPGA实现结构组合优化的方法,以提升系统计算速度。最后,使用Verilog编程对交通速度预测STGCN进行了FPGA的实现仿真和硬件测试。利用PeMSD7(M)数据集进行实验,结果显示FPGA实现单数据交通速度预测的时间为355.5μs,相比CPU、GPU平台及FPGA设计方案1对比,其处理速度最大分别提高了25.9倍、6.7倍和3.5倍,证明了交通速度预测STGCN的FPGA实现结构组合优化方法,在保持预测准确性的前提下可较大幅度的提升系统处理速度。 展开更多
关键词 交通速度预测 时空图卷积网络 FPGA 硬件实现结构 流水线 并行结构
在线阅读 下载PDF
基于全局时空图卷积神经网络的城市交通流量预测
17
作者 王佳昊 黎文斌 +1 位作者 郭仕尧 向平 《计算机科学》 CSCD 北大核心 2024年第S02期534-542,共9页
交通流量预测在智能交通系统(ITS)中发挥着重要作用,将城市中复杂的时空相关性高效且全面地提取出来是交通流量预测中面临的关键挑战。交通速度不仅在时间维度上具有短期和长期周期性依赖关系,而且在空间维度上具有局部和全局依赖性,现... 交通流量预测在智能交通系统(ITS)中发挥着重要作用,将城市中复杂的时空相关性高效且全面地提取出来是交通流量预测中面临的关键挑战。交通速度不仅在时间维度上具有短期和长期周期性依赖关系,而且在空间维度上具有局部和全局依赖性,现有方法对捕获交通数据的时空依赖关系有一定的局限。为此,文中提出了一种基于全局时空图卷积神经网络(Global Spatial-Temporal Graph Convolutional Network,GSTGCN)的深度学习模型,用于解决在城市交通速度预测的局限性。该模型中存在3种时空分量,可相应地对交通数据中的近期、天周期、周周期这3种不同的时空相关性进行建模。每个时空分量都由时间模块和空间模块组成,时间模块为了更好地获取交通数据的时间维度信息,引入了Informer机制以自适应地分配特征权重。空间模型为了更好地获取交通数据的空间关系,引入了图卷积神经网络来提取交通数据的局部和全局空间信息。在两个不同的真实数据集上进行了测试,结果表明所提出的GSTGCN优于最先进的基线模型。 展开更多
关键词 交通流量预测 全局时空图卷积网络 时空依赖性
在线阅读 下载PDF
时空图卷积网络的骨架识别硬件加速器设计
18
作者 谭会生 严舒琪 杨威 《电子测量技术》 北大核心 2024年第11期36-43,共8页
随着人工智能技术的不断发展,神经网络的数据规模逐渐扩大,神经网络的计算量也迅速攀升。为了减少时空图卷积神经网络的计算量,降低硬件实现的资源消耗,提升人体骨架识别时空图卷积神经网络(ST-GCN)实际应用系统的处理速度,利用现场可... 随着人工智能技术的不断发展,神经网络的数据规模逐渐扩大,神经网络的计算量也迅速攀升。为了减少时空图卷积神经网络的计算量,降低硬件实现的资源消耗,提升人体骨架识别时空图卷积神经网络(ST-GCN)实际应用系统的处理速度,利用现场可编程门阵列(FPGA),设计开发了一个基于时空图卷积神经网络的骨架识别硬件加速器。通过对原网络模型进行结构优化与数据量化,减少了FPGA实现约75%的计算量;利用邻接矩阵稀疏性的特点,提出了一种稀疏性矩阵乘加运算的优化方法,减少了约60%的乘法器资源消耗。经过对人体骨架识别实验验证,结果表明,在时钟频率100 MHz下,相较于CPU,FPGA加速ST-GCN单元,加速比达到30.53;FPGA加速人体骨架识别,加速比达到6.86。 展开更多
关键词 人体骨架识别 时空图卷积神经网络(ST-GCN) 硬件加速器 现场可编程门阵列(FPGA) 稀疏矩阵乘加运算硬件优化
在线阅读 下载PDF
基于多尺度时空图卷积网络与Transformer融合的多节点短期电力负荷预测方法 被引量:13
19
作者 孟衡 张涛 +3 位作者 王金 张晋源 李达 时光蕤 《电网技术》 EI CSCD 北大核心 2024年第10期4297-4305,I0113-I0117,I0112,共15页
深度学习的发展为处理电力系统中海量的负荷数据提供了良好的基础。然而,现有的负荷预测方法大多采用历史负荷序列的时间相关性构建模型,没有同时考虑相邻节点之间存在的空间耦合特性和外部因素的影响。由于图卷积神经网络在挖掘电力系... 深度学习的发展为处理电力系统中海量的负荷数据提供了良好的基础。然而,现有的负荷预测方法大多采用历史负荷序列的时间相关性构建模型,没有同时考虑相邻节点之间存在的空间耦合特性和外部因素的影响。由于图卷积神经网络在挖掘电力系统拓扑结构中的空间特征上具有巨大潜力,因此,该文提出一种基于属性增强的多尺度时空图卷积神经网络与Transformer融合的电力系统多节点负荷预测方法。首先,将外部因素建模为动态属性和静态属性,设计属性增强单元对这些因素进行编码,并利用快速最大互信息系数量化各节点负荷的动态耦合信息。其次,采用多尺度时空图卷积网络挖掘节点间的短期时空特征,同时采用Transformer补充挖掘各节点负荷的长期时域特征。最后,使用门控融合层对两个模型进行融合。在纽约公开负荷数据集上的实验结果表明,所提方法能够充分挖掘多节点负荷数据中的时空耦合特性,具有更高的预测精度和稳定性。 展开更多
关键词 多节点负荷预测 多尺度时空图卷积神经网络 属性增强 TRANSFORMER
在线阅读 下载PDF
改进时空图卷积模型的双人交互行为识别算法
20
作者 姬晓飞 张薇 冯雅迪 《科学技术与工程》 北大核心 2025年第8期3316-3324,共9页
针对双人交互行为识别网络中存在忽略人体间的非自然连接关系和交互关系等突出问题,提出一种改进时空图卷积模型的双人交互行为识别算法。首先通过边卷积操作汇聚节点的边特征,以捕获人体的非自然连接关系;其次利用改进的关系网络,构建... 针对双人交互行为识别网络中存在忽略人体间的非自然连接关系和交互关系等突出问题,提出一种改进时空图卷积模型的双人交互行为识别算法。首先通过边卷积操作汇聚节点的边特征,以捕获人体的非自然连接关系;其次利用改进的关系网络,构建了双人之间的交互关系图;然后将边卷积操作分支及交互关系图嵌入时空图卷积网络块,分别构建为边-图卷积块和交互关系块;最后将两者高效融合,提出一个能同时捕捉非自然连接关系和交互关系的改进时空图卷积算法,从而实现双人交互行为识别。为验证网络的有效性,在国际公开大型标准数据集NTU RGB+D上进行测试。实验结果显示,该算法识别准确率达97.77%,相比于基线时空图卷积模型提升了4.28个百分点,提高了双人交互行为特征的表现力,取得了比现有先进网络模型更好的识别效果。 展开更多
关键词 双人交互行为识别 关节点数据 卷积 关系网络 时空图卷积网络
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部