期刊文献+
共找到574篇文章
< 1 2 29 >
每页显示 20 50 100
改进自适应惯性权重粒子群算法及其在核动力管道布置中的应用 被引量:14
1
作者 林焰 辛登月 +2 位作者 卞璇屹 张乔宇 李铁骊 《中国舰船研究》 CSCD 北大核心 2023年第3期1-12,25,共13页
[目的]旨在研究非线性自适应惯性权重粒子群优化算法,实现船用核动力一回路系统管道路径的布置优化设计。[方法]根据船用核动力一回路系统的管道布局设计特点,建立一回路系统的管道布局空间模型、约束条件和评价函数;基于管道节点数量,... [目的]旨在研究非线性自适应惯性权重粒子群优化算法,实现船用核动力一回路系统管道路径的布置优化设计。[方法]根据船用核动力一回路系统的管道布局设计特点,建立一回路系统的管道布局空间模型、约束条件和评价函数;基于管道节点数量,提出一种粒子群优化(PSO)算法的新型定长编码方法,然后结合该编码方法建立方向引导机制;在此基础上,针对粒子群优化算法易陷入局部最优解、收敛速度慢的缺点,结合辅助线性变化的学习因子,提出一种基于非线性自适应惯性权重的改进粒子群优化算法;将改进粒子群优化算法与协同进化算法相结合,提出一种用于求解分支管道布局问题的协同进化粒子群优化算法,以用于核动力一回路系统的管道布局优化。[结果]仿真结果显示,所提的改进算法与标准算法相比收敛速度提高了40%~50%,不仅能够得到更好的管道布局效果,还解决了标准粒子群优化算法容易陷入局部最优解的问题。[结论]研究成果可为船用核动力一回路系统管道布置的优化设计提供有益的参考。 展开更多
关键词 船用核动力 一回路系统 粒子优化算法 非线性惯性 自适应 线性学习因子
在线阅读 下载PDF
基于自适应改进粒子群算法的无槽永磁直流电机优化设计
2
作者 范菁 徐庶 《沈阳工业大学学报》 北大核心 2025年第4期455-462,共8页
【目的】传统电机优化设计方法是通过搭建电机体积、损耗和成本的解析模型,并选择优化算法对其进行改进,得到最优设计变量。然而,电机模型较为复杂,解析模型无法精确描述部分变量。定子磁密是无槽永磁直流电机的重要变量,其解析式精度... 【目的】传统电机优化设计方法是通过搭建电机体积、损耗和成本的解析模型,并选择优化算法对其进行改进,得到最优设计变量。然而,电机模型较为复杂,解析模型无法精确描述部分变量。定子磁密是无槽永磁直流电机的重要变量,其解析式精度较低。粒子群算法广泛用于优化设计,但是其寻优能力较差。【方法】针对上述问题,提出一种基于自适应改进粒子群算法的无槽永磁直流电机优化设计方法。首先,通过搭建无槽永磁直流电机解析模型,构建以电机体积、损耗和成本为优化目标的目标函数。利用Sobol法获取电机的高灵敏度变量,减少设计变量个数。然后,采用有限元仿真搭建电机磁路模型,调整设计变量参数大小,获取磁密数据。使用响应面法对磁密数据进行重新拟合,构建定子磁密响应面模型,代替定子磁密解析式。对粒子群算法进行改进,通过比较粒子迭代更新时个体适应度值与全局粒子平均适应度值的大小,选择不同的惯性权重与学习因子更新方式,实现算法精度上的提升。最后,分别采用原始算法和改进算法对目标函数进行优化,通过比较得到电机最优设计参数。【结果】通过比较定子磁密解析式与定子磁密响应面模型计算结果发现,定子磁密响应面模型计算结果误差较小。采用自适应粒子群算法、原始粒子群算法和其他经典算法对目标函数进行优化,改进粒子群算法优化得到的结果最优。【结论】实验结果表明,定子磁密响应面模型代替定子磁密解析式可以改善定子磁密解析式计算误差较大的问题。同时,自适应更新惯性权重与学习因子的粒子群算法寻优能力得到了提升,与经典算法相比,其寻优能力更强。 展开更多
关键词 无槽永磁直流电机 定子磁密 Sobol法 响应面法 自适应粒子 惯性 学习因子
在线阅读 下载PDF
自适应惯性权重的改进粒子群算法 被引量:87
3
作者 敖永才 师奕兵 +1 位作者 张伟 李焱骏 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第6期874-880,共7页
针对标准PSO算法求解高维非线性问题时存在的大量无效迭代(经过一轮迭代后全局最优位置保持不变),提出了一种自适应惯性权重的改进粒子群算法。基于单次迭代中单粒子运动状态的分析,提出并证明了论点:上一轮迭代适应度值变差的粒子,当... 针对标准PSO算法求解高维非线性问题时存在的大量无效迭代(经过一轮迭代后全局最优位置保持不变),提出了一种自适应惯性权重的改进粒子群算法。基于单次迭代中单粒子运动状态的分析,提出并证明了论点:上一轮迭代适应度值变差的粒子,当前迭代中其惯性分量将引导粒子往适应度值变差的方向运动,导致粒子群体无效迭代次数增加。设计了标准PSO算法改进方案,将上一轮迭代中适应度值变差的全体粒子的惯性权重置为零,消除当前迭代中不利惯性分量对算法收敛的不良影响。采用6个标准测试函数,将该算法与标准PSO算法、固定惯性权重PSO算法和具有领袖的PSO算法进行性能对比分析。试验表明,该改进算法无效迭代次数更少,在收敛率、收敛速度和收敛稳定性上均具有明显的优势。 展开更多
关键词 自适应惯性 收敛性能 惯性分量 无效迭代 粒子优化算法
在线阅读 下载PDF
带自适应精英扰动及惯性权重的反向粒子群优化算法 被引量:24
4
作者 董文永 康岚兰 +1 位作者 刘宇航 李康顺 《通信学报》 EI CSCD 北大核心 2016年第12期1-10,共10页
针对反向粒子群优化算法存在的易陷入局部最优、计算开销大等问题,提出了一种带自适应精英粒子变异及非线性惯性权重的反向粒子群优化算法(OPSO-AEM&NIW),来克服该算法的不足。OPSO-AEM&NIW算法在一般性反向学习方法的基础上,... 针对反向粒子群优化算法存在的易陷入局部最优、计算开销大等问题,提出了一种带自适应精英粒子变异及非线性惯性权重的反向粒子群优化算法(OPSO-AEM&NIW),来克服该算法的不足。OPSO-AEM&NIW算法在一般性反向学习方法的基础上,利用粒子适应度比重等信息,引入了非线性的自适应惯性权重(NIW)调整各个粒子的活跃程度,继而加速算法的收敛过程。为避免粒子陷入局部最优解而导致搜索停滞现象的发生,提出了自适应精英变异策略(AEM)来增大搜索范围,结合精英粒子的反向搜索能力,达到跳出局部最优解的目的。上述2种机制的结合,可以有效克服反向粒子群算法的探索与开发的矛盾。实验结果表明,与主流反向粒子群优化算法相比,OPSO-AEM&NIW算法无论是在计算精度还是计算开销上均具有较强的竞争能力。 展开更多
关键词 一般性反向学习 粒子优化 自适应精英变异 非线性惯性
在线阅读 下载PDF
基于Sigmoid惯性权重自适应调整的粒子群优化算法 被引量:16
5
作者 黄利 杜伟伟 丁立新 《计算机应用研究》 CSCD 北大核心 2012年第1期32-34,共3页
提出了种群进化速度和种群聚合度两个概念,并讨论了在全局收敛过程中惯性权重与两者之间的关系;考虑Sigmoid函数在线性与非线性之间呈现的平滑过渡性,从种群进化速度和种群聚合度两方面出发,提出了基于Sigmoid函数的惯性权重自适应调整... 提出了种群进化速度和种群聚合度两个概念,并讨论了在全局收敛过程中惯性权重与两者之间的关系;考虑Sigmoid函数在线性与非线性之间呈现的平滑过渡性,从种群进化速度和种群聚合度两方面出发,提出了基于Sigmoid函数的惯性权重自适应调整方法。通过三个典型的多峰函数,将提出的算法(AS-PSO)与标准粒子群优化算法(SPSO)和基于Sigmoid函数的粒子群优化算法(S-PSO)进行了仿真分析比较,结果表明,AS-PSO算法相比其他两种算法,全局寻优能力更强,在一定程度上解决了收敛性能与全局寻优能力之间的矛盾。 展开更多
关键词 粒子优化算法 早熟 惯性 适应 自适应
在线阅读 下载PDF
一种动态改变惯性权重的自适应粒子群算法 被引量:51
6
作者 任子晖 王坚 《计算机科学》 CSCD 北大核心 2009年第2期227-229,256,共4页
针对惯性权重线性递减粒子群算法(LDWPSO)不能适应复杂的非线性优化搜索过程的问题,提出了一种动态改变惯性权重的自适应粒子群算法(DCWPSO),在该算法中引入聚焦距离变化率的概念,并根据它对粒子群算法搜索能力的影响,将惯性因子表示为... 针对惯性权重线性递减粒子群算法(LDWPSO)不能适应复杂的非线性优化搜索过程的问题,提出了一种动态改变惯性权重的自适应粒子群算法(DCWPSO),在该算法中引入聚焦距离变化率的概念,并根据它对粒子群算法搜索能力的影响,将惯性因子表示为关于聚焦距离变化率的函数。在每次迭代时算法可根据当前粒子群聚焦距离变化率的大小动态地改变惯性权重,从而使算法具有动态自适应性。对6个典型函数的测试结果表明,DCWPSO算法的收敛速度明显优于LDWPSO算法,收敛精度也有所提高。 展开更多
关键词 粒子优化 惯性 聚焦距离变化率 自适应
在线阅读 下载PDF
基于自适应惯性权重的均值粒子群优化算法 被引量:40
7
作者 赵志刚 林玉娇 尹兆远 《计算机工程与科学》 CSCD 北大核心 2016年第3期501-506,共6页
针对粒子收敛速度慢、搜索精度不高和算法性能在很大程度上依赖参数选取等缺点,提出了一种基于自适应惯性权重的均值粒子群优化算法。对算法中的惯性权重参数采用动态自适应变化方式,在迭代过程中根据粒子适应度差值将种群划分为三个等... 针对粒子收敛速度慢、搜索精度不高和算法性能在很大程度上依赖参数选取等缺点,提出了一种基于自适应惯性权重的均值粒子群优化算法。对算法中的惯性权重参数采用动态自适应变化方式,在迭代过程中根据粒子适应度差值将种群划分为三个等级,对不同等级的粒子采用不同的惯性权重策略,使粒子能根据自己所处的位置选择合适的惯性权重值,更快地收敛到全局最优位置;同时分别用个体极值和全局极值的线性组合取代PSO算法中的全局最优位置与个体最优位置。通过实验仿真与对比,验证了新算法性能优于标准PSO及其它一些改进的PSO算法,能够用较少的迭代次数找到最优解,具有更快的收敛速度和更高的收敛精度。 展开更多
关键词 粒子优化 均值 自适应惯性 适应度值
在线阅读 下载PDF
动态改变惯性权重的自适应粒子群算法 被引量:10
8
作者 邓爱萍 王会芳 《计算机工程与设计》 CSCD 北大核心 2010年第13期3062-3065,共4页
惯性权重是平衡粒子群算法中平衡全局搜索能力与局部搜索能力的重要参数。为实现快速收敛与并避免陷入局部最优,分析了PSO算法中的惯性权重与种群规模、粒子适应度以及搜索空间维度这三者的关系,并把粒子惯性权重定义为这三者的函数以改... 惯性权重是平衡粒子群算法中平衡全局搜索能力与局部搜索能力的重要参数。为实现快速收敛与并避免陷入局部最优,分析了PSO算法中的惯性权重与种群规模、粒子适应度以及搜索空间维度这三者的关系,并把粒子惯性权重定义为这三者的函数以改进PSO算法。该算法在每次迭代后根据此函数更新每个粒子的惯性权重,实现了自适应调整全局搜索能力与局部搜索能力,并结合动态管理种群的策略提出了改进的粒子群算法。通过在多个常用测试函数上与已有惯性权重调整算法测试比较,证明新算法具有较强的全局寻优能力与较高的搜索效率。 展开更多
关键词 粒子算法 自适应惯性 规模 搜索空间维度 粒子适应 动态管理种
在线阅读 下载PDF
融合隶属度函数的自适应惯性权重模式的粒子群优化算法 被引量:10
9
作者 毛焕宇 王文东 《计算机应用与软件》 北大核心 2020年第1期277-283,共7页
粒子群算法(Particle Swarm Optimization,PSO)的性能极大地依赖于其惯性权重参数的选择策略。当在一次迭代中更新粒子速度时,PSO忽略了粒子间的差异,在所有粒子上应用了相同的惯性权重。针对这一问题,提出一种自适应惯性权重的粒子群算... 粒子群算法(Particle Swarm Optimization,PSO)的性能极大地依赖于其惯性权重参数的选择策略。当在一次迭代中更新粒子速度时,PSO忽略了粒子间的差异,在所有粒子上应用了相同的惯性权重。针对这一问题,提出一种自适应惯性权重的粒子群算法PSO-AIWA,有效合理地均衡PSO的全局搜索和局部搜索能力。根据当前粒子与全局最优粒子间的差异,算法可以通过基于粒子间距的隶属度函数动态调整粒子的惯性权重,使得每次迭代中,粒子可以根据当前状态在每个维度上的搜索空间内选择合适的惯性权重进行状态更新。在6种基准函数下进行了算法的性能测试,结果表明,与随机式惯性权重PSO算法与线性递减惯性权重PSO-LDIW算法相比,该算法可以获得更好的粒子分布和收敛性。 展开更多
关键词 粒子优化 惯性 收敛性 自适应调整
在线阅读 下载PDF
适应度排序改进惯性权重的粒子群算法 被引量:3
10
作者 陶俊波 吴彰敦 蔡德所 《计算机工程与应用》 CSCD 北大核心 2009年第14期53-55,57,共4页
改进PSO算法的惯性权重。惯性权重不仅随代数纵向线性变化,也根据当前和迄今粒子的适应度重排序横向线性变化。横向线性变化上限不变,下限逐渐减小,使得横向线性变化数值范围随代数逐渐增大。惯性权重数值随着代数逐渐取负,并且适应度... 改进PSO算法的惯性权重。惯性权重不仅随代数纵向线性变化,也根据当前和迄今粒子的适应度重排序横向线性变化。横向线性变化上限不变,下限逐渐减小,使得横向线性变化数值范围随代数逐渐增大。惯性权重数值随着代数逐渐取负,并且适应度差的粒子取负的几率更大。得到基于粒子适应度排序改进惯性权重的粒子群算法(ASMIWPSO算法)。通过仿真学解释ASMIWPSO算法。Rastrigrin函数测试对比ASMIWPSO算法、PSO算法,说明ASMIWPSO算法具有更好的优化结果。 展开更多
关键词 粒子算法 惯性 适应度排序
在线阅读 下载PDF
一种自适应改变惯性权重的粒子群算法 被引量:10
11
作者 许少华 李新幸 《科学技术与工程》 北大核心 2012年第9期2205-2208,共4页
针对标准粒子群算法收敛性和收敛速度的问题,分析标准粒子群算法惯性参数对算法性能优化的影响,提出一种自适应改变惯性权重的粒子群算法(ACPSO)。通过对粒子速度和位置变化过程的分析,并结合早熟收敛程度和个体适应值自适应地调整惯性... 针对标准粒子群算法收敛性和收敛速度的问题,分析标准粒子群算法惯性参数对算法性能优化的影响,提出一种自适应改变惯性权重的粒子群算法(ACPSO)。通过对粒子速度和位置变化过程的分析,并结合早熟收敛程度和个体适应值自适应地调整惯性权重,使得算法能在全局收敛性和收敛速度之间找到良好的平衡关系,并且通过典型的函数测试,表明此方法有效地控制了粒子群的多样性,而且具有良好的收敛速度。 展开更多
关键词 粒子算法 惯性 自适应
在线阅读 下载PDF
自适应惯性权重的分组并行粒子群优化算法 被引量:12
12
作者 周飞红 廖子贞 《计算机工程与应用》 CSCD 2014年第8期40-44,共5页
针对岛屿模型的并行粒子群算法没有根本改变粒子速度更新的问题,提出一种自适应惯性权重的分组并行粒子群优化算法。该算法在迭代过程中能自适应地选择加入分组的数量,同时对各组粒子的惯性权重按照组内最优位置的变化进行自适应调整。... 针对岛屿模型的并行粒子群算法没有根本改变粒子速度更新的问题,提出一种自适应惯性权重的分组并行粒子群优化算法。该算法在迭代过程中能自适应地选择加入分组的数量,同时对各组粒子的惯性权重按照组内最优位置的变化进行自适应调整。各组运用多线程技术并行处理,粒子间采用新的信息共享的方式。仿真结果证实,该算法具有较高的收敛速度和收敛精度。 展开更多
关键词 分组 并行 粒子 自适应 惯性
在线阅读 下载PDF
基于质心和自适应指数惯性权重改进的粒子群算法 被引量:9
13
作者 陈寿文 《计算机应用》 CSCD 北大核心 2015年第3期675-679,共5页
针对粒子群优化(PSO)算法易出现早熟收敛及寻优精度低等问题,为提高粒子群优化算法寻优能力,提出了一种基于质心和自适应指数惯性权重改进的粒子群优化算法(CEPSO)。首先,使用各粒子的适应度计算权重系数;然后,分别使用各粒子当前位置... 针对粒子群优化(PSO)算法易出现早熟收敛及寻优精度低等问题,为提高粒子群优化算法寻优能力,提出了一种基于质心和自适应指数惯性权重改进的粒子群优化算法(CEPSO)。首先,使用各粒子的适应度计算权重系数;然后,分别使用各粒子当前位置和迄今为止最优位置构造了加权的种群质心和最优个体质心,使用平均粒距来度量群体状态,并依据群体状态设计了分段指数惯性权重;最后,结合使用分段指数惯性权重和双质心调整了粒子速度更新公式。仿真结果表明,CEPSO能增强寻优能力,并具有较强的稳定性。 展开更多
关键词 质心 平均粒距 自适应指数惯性 粒子优化算法
在线阅读 下载PDF
一种自适应惯性权重的粒子群优化算法 被引量:7
14
作者 郭长友 《计算机应用与软件》 CSCD 2011年第6期289-292,共4页
为较好平衡粒子群算法中全局搜索能力与局部搜索能力,分析了PSO(Particle Swarm Optimization)算法中的惯性权重与种群规模、粒子适应度以及搜索空间维度的关系,并把粒子惯性权重定义为这三者的函数。通过在每次迭代后更新每个粒子的惯... 为较好平衡粒子群算法中全局搜索能力与局部搜索能力,分析了PSO(Particle Swarm Optimization)算法中的惯性权重与种群规模、粒子适应度以及搜索空间维度的关系,并把粒子惯性权重定义为这三者的函数。通过在每次迭代后更新每个粒子的惯性权重,实现了自适应调整全局搜索能力与局部搜索能力,并结合动态管理种群的策略提出了改进的粒子群算法。通过在多个常用测试函数上与已有惯性权重调整算法测试比较,证明新算法具有较强的全局寻优能力与较高的搜索效率。 展开更多
关键词 粒子算法 自适应惯性 规模 搜索空间维度 粒子适应 动态管理种
在线阅读 下载PDF
基于质心和自适应指数惯性权重改进的粒子群算法 被引量:3
15
作者 陈寿文 《计算机工程与应用》 CSCD 北大核心 2015年第5期58-64,250,共8页
针对标准粒子群优化算法易出现早熟收敛及寻优精度低等缺陷,提出一种基于双质心和自适应指数惯性权重的改进粒子群算法(DCAEPSO)。算法使用粒子搜到的最优解和当前解构造加权的种群质心和最优个体质心,结合使用自适应指数惯性权重调整... 针对标准粒子群优化算法易出现早熟收敛及寻优精度低等缺陷,提出一种基于双质心和自适应指数惯性权重的改进粒子群算法(DCAEPSO)。算法使用粒子搜到的最优解和当前解构造加权的种群质心和最优个体质心,结合使用自适应指数惯性权重调整了速度更新公式。通过几个典型测试函数仿真及Friedman和Holm检验,实验结果显示DCAEPSO比其他粒子群算法寻优能力强。 展开更多
关键词 粒子算法 质心 自适应指数惯性
在线阅读 下载PDF
基于惯性权重矩阵的自适应粒子群算法 被引量:17
16
作者 杜霖 曹江涛 李书臣 《控制工程》 CSCD 北大核心 2018年第7期1303-1311,共9页
为得到一种简单易实现、寻优能力强的粒子群算法,以便满足实际工程优化问题的需求,提出一种基于惯性权重矩阵的自适应粒子群算法(RDR-PSO)。首先,定义了算法稳定运行概念并从离散状态空间方程角度分析了粒子群算法,在该概念下得到算... 为得到一种简单易实现、寻优能力强的粒子群算法,以便满足实际工程优化问题的需求,提出一种基于惯性权重矩阵的自适应粒子群算法(RDR-PSO)。首先,定义了算法稳定运行概念并从离散状态空间方程角度分析了粒子群算法,在该概念下得到算法稳定运行时参数限制条件和粒子的运动规律;然后,定义了粒子活跃度,引入使算法每一步较大概率收敛较小概率发散的参数组合选择策略、惯性权重矩阵策略、根据粒子活跃度速度重置和历史最优值扰动策略,得到一种改进的粒子群算法(RDR-PSO);最后,对RDR-PSO算法性能进行仿真测试,结果表明,该算法具有收敛精度高、全局寻优能力强和简单易实现的优点,具有广泛的应用前景。 展开更多
关键词 粒子算法 离散状态空间方程 惯性矩阵策略 参数选择方法 置策略
在线阅读 下载PDF
一种带变异算子的自适应惯性权重二进制粒子群优化算法 被引量:21
17
作者 王越 邱飞岳 郭海东 《小型微型计算机系统》 CSCD 北大核心 2019年第4期733-737,共5页
针对离散二进制粒子群优化算法在寻优过程中收敛速度慢、搜索精度不高和易陷入局部最优的问题,本文提出一种带变异算子的自适应惯性权重二进制粒子群优化算法(MABPSO).首先,采用非线性递增策略优化惯性权重,平衡二进制粒子群算法的全局... 针对离散二进制粒子群优化算法在寻优过程中收敛速度慢、搜索精度不高和易陷入局部最优的问题,本文提出一种带变异算子的自适应惯性权重二进制粒子群优化算法(MABPSO).首先,采用非线性递增策略优化惯性权重,平衡二进制粒子群算法的全局探索与局部探索性能;其次,引入对未知空间搜索的变异算子,改进速度更新公式,使粒子的寻优范围扩大,增强算法多样性,有效避免陷入局部最优解.通过在六个基准测试函数上进行测试所得到的实验结果表明,本文对二进制粒子群优化算法所做的优化相比于其它三种算法,具有较好的逃离局部最优解的能力,提高了算法的收敛性能. 展开更多
关键词 二进制粒子优化算法 非线性惯性 变异算子
在线阅读 下载PDF
一种新的带有动态自适应惯性权重和混合变异的粒子群优化算法 被引量:3
18
作者 王苗苗 高岳林 《计算机应用与软件》 CSCD 2010年第6期70-72,110,共4页
提出一种新的带有混合变异算子的自适应粒子群优化算法。该算法使用了动态自适应惯性权重,粒子群中所有粒子适应度的整体变化可以跟踪粒子群的状态,在每次迭代时,算法可根据粒子的适应度变化动态改变惯性权重,从而使算法具有动态自适应... 提出一种新的带有混合变异算子的自适应粒子群优化算法。该算法使用了动态自适应惯性权重,粒子群中所有粒子适应度的整体变化可以跟踪粒子群的状态,在每次迭代时,算法可根据粒子的适应度变化动态改变惯性权重,从而使算法具有动态自适应性。在每次迭代过程中,对符合变异条件的粒子进行混合变异。通过对六个典型的测试函数的试验,表明该方法具有较强的全局寻优能力,克服了基本PSO易陷入早熟收敛的现象,并进一步提高了计算精度。 展开更多
关键词 粒子优化 动态自适应惯性 混合变异算子
在线阅读 下载PDF
一种动态改变惯性权的自适应粒子群算法 被引量:141
19
作者 张选平 杜玉平 +1 位作者 秦国强 覃征 《西安交通大学学报》 EI CAS CSCD 北大核心 2005年第10期1039-1042,共4页
针对惯性权值线性递减粒子群算法(LDW)不能适应复杂的非线性优化搜索过程的问题,提出了一种动态改变惯性权的自适应粒子群算法(DCW).在该算法中引入了参数粒子群进化速度因子和聚集度因子,并根据这2个参数对粒子群算法搜索能力的影响,... 针对惯性权值线性递减粒子群算法(LDW)不能适应复杂的非线性优化搜索过程的问题,提出了一种动态改变惯性权的自适应粒子群算法(DCW).在该算法中引入了参数粒子群进化速度因子和聚集度因子,并根据这2个参数对粒子群算法搜索能力的影响,将惯性因子表示为粒子群进化速度因子和聚集度因子的函数.在每次迭代时算法可根据当前粒子群进化速度因子和聚集度因子动态地改变惯性权值,从而使算法具有动态自适应性.对几种典型函数的测试结果表明,DCW算法的收敛速度明显优于LDW算法,收敛精度也有所提高. 展开更多
关键词 粒子 惯性 自适应
在线阅读 下载PDF
基于IMQ惯性权重策略的自适应灰狼优化算法 被引量:3
20
作者 于明洋 李婷 许静 《计算机科学》 CSCD 北大核心 2024年第7期354-361,共8页
针对灰狼优化算法(Grey Wolf Optimizer, GWO)寻优精度低、收敛速度慢的问题,提出了一种基于IMQ惯性权重策略的自适应灰狼优化算法(ISGWO)。该算法利用IMQ函数的特性,实现对惯性权重的非线性调整,从而更好地平衡算法的全局勘探能力和局... 针对灰狼优化算法(Grey Wolf Optimizer, GWO)寻优精度低、收敛速度慢的问题,提出了一种基于IMQ惯性权重策略的自适应灰狼优化算法(ISGWO)。该算法利用IMQ函数的特性,实现对惯性权重的非线性调整,从而更好地平衡算法的全局勘探能力和局部开发能力;同时,基于Sigmoid指数函数自适应更新个体位置,更好地搜索和优化问题的解空间。采用6个基本函数和29个CEC2017函数对ISGWO进行测试,并与6种常用的算法进行比较,实验结果表明ISGWO具有更优的收敛精度和速度。 展开更多
关键词 IMQ函数 惯性 自适应 灰狼优化算法 收敛速度 寻优精度
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部