期刊文献+

自适应惯性权重的改进粒子群算法 被引量:85

Improved Particle Swarm Optimization with Adaptive Inertia Weight
在线阅读 下载PDF
导出
摘要 针对标准PSO算法求解高维非线性问题时存在的大量无效迭代(经过一轮迭代后全局最优位置保持不变),提出了一种自适应惯性权重的改进粒子群算法。基于单次迭代中单粒子运动状态的分析,提出并证明了论点:上一轮迭代适应度值变差的粒子,当前迭代中其惯性分量将引导粒子往适应度值变差的方向运动,导致粒子群体无效迭代次数增加。设计了标准PSO算法改进方案,将上一轮迭代中适应度值变差的全体粒子的惯性权重置为零,消除当前迭代中不利惯性分量对算法收敛的不良影响。采用6个标准测试函数,将该算法与标准PSO算法、固定惯性权重PSO算法和具有领袖的PSO算法进行性能对比分析。试验表明,该改进算法无效迭代次数更少,在收敛率、收敛速度和收敛稳定性上均具有明显的优势。 To reduce the invalid iterations (the iteration in which the global optimum position is unchanged) of the particle swarm while solving the high-dimensional nonlinear problems by the standard particle swarm optimization (PSO) algorithm, an improved PSO algorithm with adaptive inertia weight is proposed in this paper. Based on the analysis of the instantaneous movement of single particle at each iteration, a significant argument is given and proved. In the improved algorithm, the inertia weights of the particles whose fitness become worse at the last iterations are set to zero. Six benchmark functions were used to test the proposed improved PSO algorithm, the standard PSO algorithm, the fixed inertia weight PSO algorithm, and the PSO algorithm with the leader. Experiments show that the invalid iterations of the proposed algorithm are less and it has obvious superiority on the convergence ratio, the convergence speed, and the convergence stability.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第6期874-880,共7页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61201131) 中央高校基本科研业务费(ZYGX2012J092 ZYGX2012K094)
关键词 自适应惯性权重 收敛性能 惯性分量 无效迭代 粒子群优化算法 adaptive inertia weight convergence performance inertial component invalid iteration particle swarm optimization (PSO) algorithm
作者简介 敖永才(1976-),男,博士,主要从事模式识别、智能优化算法方面的研究.
  • 相关文献

参考文献11

  • 1KENNEDY J, EBERHART R C. Particle swarmoptimization[C]//Proceedings of IEEE InternationalConference on Neural Networks. [S.l.]. IEEE, 1995:1942-1948.
  • 2SHI Y H, EBERHART R C. A modified particle swarmoptimizer[C]//Proceedings of IEEE Congress onEvolutionary Computation(CEC 1998). Piscataway: IEEE,1998: 69-73.
  • 3SHI Y H, EBERHART R C. Parameter selection in particleswarm optimization[C]//7th International Conference,Evolutionary Programming VII. Berlin Heidelberg: Springer,1998,1447: 591-600.
  • 4LIU Y,ZHENG Q, ZHEWEN S, et al. Center particle swarmoptimization [J]. Neurocomputing, 2007, 70(4): 672-679.
  • 5TSAI Hsing-chih, TYAN Yaw-yauan, WU Yun-wu, et al.Gravitational particle swarm[J], Applied Mathematics andComputation, 2013,219(17): 9106-9117.
  • 6WORASUCHEEP C. A particle swarm optimization withstagnation detection and dispersion[C]//IEEE Congress onEvolutionary Computation. [S.l.]. IEEE, 2008: 424-429.
  • 7吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:453
  • 8ZHOU L, SHI Y, LI Y, et al. Parameter selection, analysisand evaluation of an improved particle swarm optimizerwith leadership[J]. Artificial Intelligence Review, 2010,34(4): 343-367.
  • 9CLERC M,KENNEDY J. The particle swarm-explosion,stability, and convergence in a multidimensional complexspace[J]. IEEE Transactions on Evolutionary Computation,2002,6(1): 58-73.
  • 10CHALERMCHAIARBHA S, ONGSAKUL W. Stochasticweight trade-off particle swarm optimization fornonconvex economic dispatch[J]. Energy Conversion andManagement, 2013,70: 66-75.

二级参考文献1

  • 1王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.

共引文献452

同被引文献787

引证文献85

二级引证文献855

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部