期刊文献+
共找到1,541篇文章
< 1 2 78 >
每页显示 20 50 100
基于自适应变异混沌粒子群优化和SVM的导弹命中预测模型 被引量:2
1
作者 许凌凯 杨任农 +1 位作者 张彬超 左家亮 《计算机应用》 CSCD 北大核心 2017年第10期3024-3028,共5页
针对国内外关于导弹命中预测方面存在的研究深度不足、算法寻优能力不强、模型预测精度不高等缺陷,提出一种基于自适应变异混沌粒子群算法(AMCPSO)和支持向量机(SVM)的导弹命中预测模型。首先,对空战数据进行特征提取,构建模型训练所需... 针对国内外关于导弹命中预测方面存在的研究深度不足、算法寻优能力不强、模型预测精度不高等缺陷,提出一种基于自适应变异混沌粒子群算法(AMCPSO)和支持向量机(SVM)的导弹命中预测模型。首先,对空战数据进行特征提取,构建模型训练所需样本库;然后,采用改进的AMCPSO算法对SVM中的惩罚因子C和核函数参数g进行寻优,并用优化后的模型对样本进行预测;最后,与经典PSO算法、BP神经网络法、网格法构建的预测模型进行了对比实验。实验结果表明,所提算法的全局寻优能力与局部寻优能力均得到提高,模型预测精度较高,可为导弹命中预测研究提供一定的参考依据。 展开更多
关键词 支持向量机 自适应变异混沌粒子群优化 导弹命中预测 智能空战 军事航空
在线阅读 下载PDF
自适应混合粒子群优化DMC及其在脱硫系统中的应用
2
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
粒子群算法多目标优化下的超混沌人脸图像加密
3
作者 余锦伟 谢巍 +1 位作者 张浪文 余孝源 《控制理论与应用》 北大核心 2025年第5期875-884,共10页
本文将粒子群优化算法(PSO)与超混沌系统相结合,提出一种基于多目标优化的人脸图像加密方案.该方案通过PSO算法协同优化多项加密评估指标,包括相关关系、像素变化率(NPCR)、统一平均变化强度(UACI)和信息熵.首先,初始化混沌系统的控制参... 本文将粒子群优化算法(PSO)与超混沌系统相结合,提出一种基于多目标优化的人脸图像加密方案.该方案通过PSO算法协同优化多项加密评估指标,包括相关关系、像素变化率(NPCR)、统一平均变化强度(UACI)和信息熵.首先,初始化混沌系统的控制参数,并采用SHA-256算法生成混沌系统的初始值,迭代生成高敏感性的随机序列;其次,利用随机序列执行像素置乱、扩散和行列置乱操作,生成初始加密人脸图像;然后,将加密人脸图像视为PSO算法的个体,通过迭代更新个体的位置优化考虑多项指标的适应性函数;最后,确定混沌系统的最优参数,并得到最佳的加密人脸图像.实验结果表明,本文的方法在信息熵、像素相关系数、NPCR和UACI方面的表现都优于主流方法,这说明本文所提方法具有更高的安全性. 展开更多
关键词 混沌系统 粒子算法 图像加密 智能优化 人脸隐私保护
在线阅读 下载PDF
基于多群自适应协同粒子群优化算法的光储热泵系统研究
4
作者 刘鑫冉 吴振奎 +1 位作者 张腾飞 宋庚岭 《现代电子技术》 北大核心 2025年第10期127-134,共8页
为解决小型电热耦合系统的资源失配问题,并缓解北方地区供热压力和提高离网负荷供电的可靠性,通过整合光伏发电单元、蓄电池储能单元与高效水源热泵的供暖系统,将各部分看作不同子群,提出一种求解系统能量配比的最优解的多群自适应协同... 为解决小型电热耦合系统的资源失配问题,并缓解北方地区供热压力和提高离网负荷供电的可靠性,通过整合光伏发电单元、蓄电池储能单元与高效水源热泵的供暖系统,将各部分看作不同子群,提出一种求解系统能量配比的最优解的多群自适应协同粒子群优化算法。修正各子群的粒子惯性权重,通过多群协同机制避免求解过程陷入局部最优,并采用自适应性策略(ACS)来控制历史信息的影响,以提高子群的搜索效率和目标解的精度。实验结果表明:所提方法优化了光伏-储能-热泵系统的协同运行能力,避免了资源失配造成的能量浪费问题,且能够实现以清洁能源为热泵供电的目标,有效缓解北方地区冬季供热压力;该方法还将离网负荷供电可靠性提升至更高水平,兼具环境效益与工程应用潜力。 展开更多
关键词 热泵供暖系统 光伏发电 蓄电池储能 自适应多目标粒子算法 能量分配 系统优化
在线阅读 下载PDF
基于混沌自适应变异粒子群优化的解相干算法 被引量:8
5
作者 张陆游 张永顺 杨云 《电子与信息学报》 EI CSCD 北大核心 2009年第8期1825-1829,共5页
针对相干信源波达方向估计的需要,结合粒子群优化算法,论文提出了一种基于混沌自适应变异粒子群优化的广义极大似然算法(CAMPSOGML),算法对阵列的几何结构没有任何约束,分辨的信源数可大于阵元数,算法把混沌初始化和自适应变异策略引进... 针对相干信源波达方向估计的需要,结合粒子群优化算法,论文提出了一种基于混沌自适应变异粒子群优化的广义极大似然算法(CAMPSOGML),算法对阵列的几何结构没有任何约束,分辨的信源数可大于阵元数,算法把混沌初始化和自适应变异策略引进粒子群算法中,有效地提高了收敛速度,克服了粒子群算法容易陷入局部最优值的缺点。计算机仿真表明:与基于实数遗传算法和粒子群算法的广义极大似然估计方法相比,CAMPSOGML算法在收敛速度和估计精度上都有优势,是一种新颖的有效的解相干算法。 展开更多
关键词 波达方向估计 混沌自适应变异 广义最大似然 粒子算法 相干
在线阅读 下载PDF
基于自适应变异的混沌粒子群优化算法 被引量:13
6
作者 李建美 高兴宝 《计算机工程与应用》 CSCD 北大核心 2016年第10期44-49,共6页
粒子群优化算法参数少,寻优速度快,但其寻优效率低且在寻优后期易早熟收敛。为改善其寻优性能,在标准粒子群优化算法中,通过引入混沌映射和自适应变异策略,提出具有自适应变异的混沌粒子群优化(ACPSO)算法,以增强种群的全局寻优性能和... 粒子群优化算法参数少,寻优速度快,但其寻优效率低且在寻优后期易早熟收敛。为改善其寻优性能,在标准粒子群优化算法中,通过引入混沌映射和自适应变异策略,提出具有自适应变异的混沌粒子群优化(ACPSO)算法,以增强种群的全局寻优性能和局部寻优效率。六个基准测试函数的仿真结果表明,ACPSO算法比已有的五个算法具有更好的寻优能力。 展开更多
关键词 粒子优化 自适应策略 混沌映射 数值优化
在线阅读 下载PDF
邻域自适应粒子群算法求解地源热泵区域能源系统鲁棒优化调度问题
7
作者 吴亮红 王维 +1 位作者 张红强 贾睿 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第6期1089-1100,共12页
针对地源热泵区域能源系统中冷热负荷和机组效能的不确定性,本文提出了一种考虑双重不确定性的鲁棒优化调度方法.首先,基于多面体不确定模型描述调度模型中的鲁棒变量.然后,针对建筑冷热负荷不确定性,采用对偶原理将双层优化模型等价为... 针对地源热泵区域能源系统中冷热负荷和机组效能的不确定性,本文提出了一种考虑双重不确定性的鲁棒优化调度方法.首先,基于多面体不确定模型描述调度模型中的鲁棒变量.然后,针对建筑冷热负荷不确定性,采用对偶原理将双层优化模型等价为单层优化模型;对于机组效能不确定性,采用场景法进行分析.最后,采用多目标优化约束处理方法处理鲁棒优化调度模型中的约束条件.同时,为更加高效、准确求解所构建的优化调度模型,提出了一种邻域自适应粒子群优化算法(NAPSO).实验结果表明,在制冷和制热工况下,与经验运行策略相比,本文所提方法可分别减少7.22%和5.55%的系统运行成本,是一种解决地源热泵区域能源系统鲁棒优化调度的有效方法. 展开更多
关键词 地源热泵 鲁棒优化调度 邻域自适应 粒子优化 不确定性
在线阅读 下载PDF
动态多群粒子群优化稀疏分解在薄涂层超声测厚中的应用
8
作者 刘易奕 黄华 +3 位作者 王志刚 王海涛 卢超 李秋锋 《振动与冲击》 北大核心 2025年第1期61-69,共9页
基于稀疏分解匹配追踪算法将装配式钢结构防护涂层超声检测信号表示在过完备Gabor时频库中,进一步提取涂层的时域信息来获得涂层的厚度信息。针对匹配追踪算法复杂度高、计算量庞大的问题,利用动态多群粒子群算法收敛快寻优能力强的特... 基于稀疏分解匹配追踪算法将装配式钢结构防护涂层超声检测信号表示在过完备Gabor时频库中,进一步提取涂层的时域信息来获得涂层的厚度信息。针对匹配追踪算法复杂度高、计算量庞大的问题,利用动态多群粒子群算法收敛快寻优能力强的特性对匹配追踪算法进行优化。基于混沌策略生成惯性权重,并将学习因子和惯性权重通过三角函数关系联立在一起,而在位置更新中增加时间因子和混沌扰动策略的影响因素,平衡了算法的局部寻优和全局寻优能力。仿真与试验表明,改进后的算法检测精度得到较大提升,能够满足实际应用,并且极大地提升了稀疏分解运算的效率,与金相检测结果对比,防火涂层检测相对误差为-4.65%,防腐涂层的检测相对误差为1.33%。 展开更多
关键词 防护涂层 超声检测 稀疏分解 混沌扰动 动态多粒子优化(DMS-PSO)
在线阅读 下载PDF
粒子群优化随机森林机床热误差建模与补偿
9
作者 苏哲 郭世杰 +3 位作者 丁强强 唐术锋 邹云鹤 吕贺 《机床与液压》 北大核心 2025年第12期8-16,共9页
为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策... 为了提高机床热误差预测精度,提出一种自适应粒子群(APSO)优化随机森林(RF)模型的机床直线轴热误差预测方法。采用浣熊优化算法(COA)对K-Means算法进行优化,并结合相关性分析筛选出温度敏感点;提出动态惯性权重与学习因子的线性调整策略来避免粒子群算法陷入局部最优解,构建了基于APSO-RF的直线轴热误差预测模型。为了验证模型的准确性与实用性,在VDL-600A型加工中心上以X轴为例进行热误差测量与建模验证,基于FANUC系统坐标原点偏移(EMZPS)功能结合自主搭建的热误差辅助补偿系统,实现了计算机与系统间的通信连接。结果表明:APSO-RF热误差模型的均方根误差相比PSO-SVM、RF及BP模型分别降低了18.3%、45.2%及47.2%,有效提高了建模精度。根据构建的模型与补偿系统功能模块,补偿后热误差最大值由71.15μm降至13.4μm,精度提升81.2%,所构建的热误差补偿方法可有效提高机床的加工精度及稳定性。 展开更多
关键词 数控机床 热误差补偿 自适应粒子优化随机森林(APSO-RF)模型 浣熊优化算法(COA)
在线阅读 下载PDF
基于模式搜索的粒子群优化光伏MPPT控制研究
10
作者 李润基 孟丽囡 《现代电子技术》 北大核心 2025年第12期83-88,共6页
光伏发电系统的输出功率具有显著的非线性特性,且易受辐照度、温度等环境因素扰动,导致功率输出不稳定。现有的最大功率点跟踪(MPPT)技术在动态环境下的追踪精度与响应速度仍存在不足。为此,提出一种基于模式搜索与粒子群优化(PSO)相结... 光伏发电系统的输出功率具有显著的非线性特性,且易受辐照度、温度等环境因素扰动,导致功率输出不稳定。现有的最大功率点跟踪(MPPT)技术在动态环境下的追踪精度与响应速度仍存在不足。为此,提出一种基于模式搜索与粒子群优化(PSO)相结合的最大功率点跟踪控制技术。该技术是将局部探索能力较强的模式搜索算法和全局开采能力较强的粒子群优化算法进行有效结合,从而提高光伏系统在各种环境条件下的效率。通过粒子群优化算法在可行域内进行全局搜索,同时引入柯西变异机制以扩大粒子搜索范围,增强算法的全局寻优能力;并且融合模式搜索法对搜索到的较优解进行局部寻优,以提高解的精度。仿真结果表明,通过两种算法的结合,所提方法能在更短时间内找到全局最大功率点;与标准粒子群优化算法相比,该混合算法在静态局部阴影、动态局部阴影两种工况下都能快速准确地追踪到最大功率点。 展开更多
关键词 最大功率点追踪 模式搜索技术 粒子优化算法 柯西变异 局部搜索 全局优化
在线阅读 下载PDF
基于粒子群优化BP神经网络的核事故源项反演
11
作者 游清悦 曹博 +3 位作者 彭丁萍 李中昊 缪学伟 陈洲亮 《核电子学与探测技术》 北大核心 2025年第3期371-381,共11页
核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所... 核事故发生后,快速准确地估算源物质的释放速率对于提升核应急响应速度及确保决策的可靠性至关重要。本文选择碘-131(^(131)I)核素的释放速率作为源项反演的目标值,利用课题组开发的放射性核素大气扩散模拟程序RADC生成神经网络训练所需的数据集。利用Matlab构建了粒子群算法(Particle Swarm Optimization,PSO)优化误差反向传播(Back Propagation,BP)神经网络的核事故源项反演模型,同时考虑了粒子群算法中超参数和适应度函数的不同对算法优化性能的影响。结果表明:PSOBP模型源项反演测试结果的平均绝对百分比误差为2.14%,平均绝对误差为0.011437,均方差为0.000685,各个评价指标明显优于BP神经网络,验证了该模型的可行性,有助于快速核应急响应。 展开更多
关键词 源项反演 BP神经网络 粒子优化 参数优化 适应度函数
在线阅读 下载PDF
基于改进粒子群优化算法的船舶避碰研究 被引量:1
12
作者 朱凯鹏 王全政 +3 位作者 杨文政 于庆州 王泽凡 王晓原 《传感器与微系统》 北大核心 2025年第4期40-43,47,共5页
随着海上贸易的日益增长,海洋运输已逐渐成为世界各国运输和贸易发展的重要环节,如何避免船舶碰撞已成为海上贸易中的一个重要问题。针对海上船舶避碰问题,本文提出了一种改进粒子群优化(IPSO)算法,该算法根据当前粒子目标函数的平均值... 随着海上贸易的日益增长,海洋运输已逐渐成为世界各国运输和贸易发展的重要环节,如何避免船舶碰撞已成为海上贸易中的一个重要问题。针对海上船舶避碰问题,本文提出了一种改进粒子群优化(IPSO)算法,该算法根据当前粒子目标函数的平均值动态调整惯性权值,另外考虑到船舶操纵的安全性,改进了适应度函数,并结合IPSO算法,对函数进行求解。通过MATLAB仿真结果表明,与传统的PSO算法相比,IPSO算法的收敛速度提高了37.5%,搜索效率得到显著增强。 展开更多
关键词 船舶避碰 改进粒子优化算法 自适应惯性权值 避碰决策
在线阅读 下载PDF
自适应策略优化的粒子群优化算法在神经网络架构搜索中的应用 被引量:2
13
作者 程金芮 金瑾 +3 位作者 张朝龙 孔超 何嘉 张鑫 《计算机应用》 CSCD 北大核心 2024年第S01期60-64,共5页
针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与... 针对神经网络架构搜索(NAS)任务,提出一种自适应重启策略驱动的协作学习粒子群优化(ARCLPSO)算法。算法核心流程包括协作学习与信息共享、策略切换和参数自适应,以改进传统粒子群优化(PSO)算法在NAS中的性能。ARCLPSO算法结合了全局与局部信息的协同作用和智能切换学习策略。具体地,ARCLPSO利用全局和局部信息的协同作用令粒子向更优的方向移动,通过智能的切换粒子学习策略平衡粒子的搜索性能和收敛速度,提高搜索速度和搜索质量。在NAS-Bench-101数据集上的实验结果表明,ARCLPSO的收敛时间相较于传统进化算法(REA)和随机搜索(RS),分别减少了40.9%和55.2%。 展开更多
关键词 神经网络架构搜索 粒子优化 进化算法 NAS-Bench-101 自适应的协作学习算法
在线阅读 下载PDF
基于粒子群自进化的冷链物流运输路径优化方法
14
作者 黄继磊 《包装工程》 北大核心 2025年第11期285-293,共9页
目的为优化冷链物流运输路径,提高整体效率,提出基于粒子群自进化的冷链物流运输路径优化方法。方法在时间与载重等约束条件下,构建融合惩罚函数的目标函数,以最小化总成本并最大化顾客满意度,提升服务质量。建立由物流中心、供应仓库... 目的为优化冷链物流运输路径,提高整体效率,提出基于粒子群自进化的冷链物流运输路径优化方法。方法在时间与载重等约束条件下,构建融合惩罚函数的目标函数,以最小化总成本并最大化顾客满意度,提升服务质量。建立由物流中心、供应仓库构成的多层多分支树,更细致地描述冷链物流网络的结构和特点,计算个体粒子的初始位置、速度,获得路径参数。采用交叉算子和变异算子改进粒子群算法,判定更新状态,求出粒子群自进化修正速度,实现冷链物流运输路径优化函数求解,提高冷链物流运输路径优化的效率。结果实验结果表明,所提方法应用后能高效地完成配送任务,准时率始终保持在98%以上。结论所提方法在保证服务质量的同时最大限度地利用资源,运输路径优化效果佳。 展开更多
关键词 粒子自进化 冷链物流 变异算子 运输路径优化 交叉算子
在线阅读 下载PDF
基于自适应粒子群优化算法的串联复合涡轮储能优化策略 被引量:2
15
作者 王震 张珊珊 +1 位作者 邬斌扬 苏万华 《计算机应用》 CSCD 北大核心 2024年第2期611-618,共8页
针对发动机串联复合涡轮发电系统储能困难等问题,提出了一种基于自适应粒子群优化(SAPSO)算法的最大功率点追踪(MPPT)方法,增强发电系统功率的捕获能力。此外,采用混合储能系统(HESS)替代单一蓄电池储能,实现电能的高效、稳定存储。通过... 针对发动机串联复合涡轮发电系统储能困难等问题,提出了一种基于自适应粒子群优化(SAPSO)算法的最大功率点追踪(MPPT)方法,增强发电系统功率的捕获能力。此外,采用混合储能系统(HESS)替代单一蓄电池储能,实现电能的高效、稳定存储。通过Matlab/Simulink软件,建立了基于发动机串联复合涡轮发电的储能优化控制仿真模型,对比分析了不同控制方法在设定工况下的功率追踪性能以及混合储能系统的储能特性。仿真结果表明,相较于传统扰动观测法(P&O)控制方法,在所提的SAPSO-MPPT方法下,发电功率提高了190 W,响应时间缩短了0.15 s。同时,HESS能够有效追踪母线上的需求功率,电能回收效率高达95.3%。最后,基于Y24型改装发动机台架搭建了串联复合涡轮发电系统实验平台,对所提储能优化控制策略的节油潜力进行了实验验证。结果表明,SAPSO-MPPT+HESS储能优化策略能够有效提高排气能量回收效率,优化后系统总热效率比原发动机提高了提高0.53个百分点。 展开更多
关键词 自适应粒子优化算法 串联复合涡轮发电系统 最大功率点追踪 混合储能系统
在线阅读 下载PDF
基于峰值导向型粒子群优化算法的城市水文模型自动率定方法
16
作者 许王辰 陈瑞弘 孙岸炜 《水利水电科技进展》 北大核心 2025年第4期31-38,共8页
针对城市多参数水文模型中径流及峰现时间人工率定效率低、精度不足的问题,提出一种基于改进粒子群优化(PSO)算法的模型参数自动率定方法。该方法在PSO算法中引入Logistic映射和莱维飞行,分别用于粒子初始化和位置更新,以避免陷入局部最... 针对城市多参数水文模型中径流及峰现时间人工率定效率低、精度不足的问题,提出一种基于改进粒子群优化(PSO)算法的模型参数自动率定方法。该方法在PSO算法中引入Logistic映射和莱维飞行,分别用于粒子初始化和位置更新,以避免陷入局部最优;同时结合城市产汇流模型特征,构建包含整体拟合、峰值及峰现时间的加权多目标适应度函数,以提高模型对关键水文特征的捕捉能力。通过Python实现该方法与机理模型(雨洪管理模型,SWMM)的交互,并利用试验场实测数据对10个关键水文参数进行率定,比较不同权重取值的适应度函数的拟合效果。结果表明,构建的加权多目标适应度函数在城市排水系统应急调度应用中更具优势,尤其在提高峰值与峰现时间模拟精度方面表现更优。将该方法应用于九江实际排水系统,峰值误差和峰现时间误差分别为0.56%和-6.82%,验证了方法的可行性与准确性。 展开更多
关键词 城市水文模型 多目标适应度函数 粒子优化算法 自动率定 SWMM
在线阅读 下载PDF
改进粒子群算法的径向柱塞液压马达内曲线优化
17
作者 李佳璇 康绍鹏 +4 位作者 杨静 刘凯磊 强红宾 柯贤胜 崔毅 《现代制造工程》 北大核心 2025年第2期69-75,共7页
径向柱塞液压马达在中大型机械装备中应用十分广泛,然而因其内部存在冲击与疲劳磨损等问题,对径向柱塞液压马达的寿命与性能造成了一定的影响。针对上述问题,提出了一种改进粒子群算法优化径向柱塞液压马达内曲线的方法,该方法将等加速... 径向柱塞液压马达在中大型机械装备中应用十分广泛,然而因其内部存在冲击与疲劳磨损等问题,对径向柱塞液压马达的寿命与性能造成了一定的影响。针对上述问题,提出了一种改进粒子群算法优化径向柱塞液压马达内曲线的方法,该方法将等加速度曲线重构为含补偿区的等加速度曲线,以减小冲击和接触应力突变值。以粒子群算法(Particle Swarm Optimization,PSO)为基础,加入自适应非线性动态权重与多子种群竞争优化策略,构建一种改进粒子群算法,对各区段角度进行重新分配,重新生成含补偿区的径向柱塞液压马达内曲线。对比优化前后的结果表明,最大接触应力下降了2.54%,最大接触应力处的突变值下降至0;接触应力不再阶跃式上升,有上升过程,冲击较小。该研究能够为径向柱塞液压马达的设计提供参考,有效减缓疲劳与磨损,降低冲击影响,从而延长液压马达的使用寿命。 展开更多
关键词 径向柱塞液压马达 内曲线 自适应非线性动态权重 多子种竞争优化策略 改进粒子算法
在线阅读 下载PDF
基于自适应混沌粒子群优化算法的多目标无功优化 被引量:79
18
作者 李娟 杨琳 +2 位作者 刘金龙 杨德龙 张晨 《电力系统保护与控制》 EI CSCD 北大核心 2011年第9期26-31,共6页
针对粒子群无功优化中由于随机生成代表控制变量值的粒子,使得在优化迭代过程中易陷入局部最优解,而且后期收敛速度慢等问题,将混沌优化算法融合到粒子群算法中,提出了混沌粒子群算法求解多目标无功优化问题。该算法在初始化粒子即无功... 针对粒子群无功优化中由于随机生成代表控制变量值的粒子,使得在优化迭代过程中易陷入局部最优解,而且后期收敛速度慢等问题,将混沌优化算法融合到粒子群算法中,提出了混沌粒子群算法求解多目标无功优化问题。该算法在初始化粒子即无功优化控制变量值时,采用混沌思想,增加控制变量取值的多样性;通过粒子群无功优化算法计算各个粒子对应的适应值即无功优化目标函数值,并按照其大小择优选取控制变量值进行混沌优化以帮助无功优化控制变量跳出局部极值区域;并根据无功优化目标函数值自适应地调整其惯性权重系数以提高全局与局部搜索能力。通过算例分析表明,采用自适应混沌粒子群算法进行无功优化,能够及时跳出局部最优得到全局最优解,且收敛速度快。 展开更多
关键词 自适应 混沌粒子优化算法 无功优化 惯性权重
在线阅读 下载PDF
基于自适应变异粒子群算法的电动汽车换电池站充电调度多目标优化 被引量:65
19
作者 田文奇 和敬涵 +2 位作者 姜久春 牛利勇 王小君 《电网技术》 EI CSCD 北大核心 2012年第11期25-29,共5页
大规模电动汽车用户的无序充电行为会对电网造成"峰上加峰"等影响,因此电动汽车规模化应用迫切要求实现对充电行为的引导和调度。电动汽车换电站具有受可调度时间约束影响小等特点,与个体电动汽车相比较易实现充电调度。根据... 大规模电动汽车用户的无序充电行为会对电网造成"峰上加峰"等影响,因此电动汽车规模化应用迫切要求实现对充电行为的引导和调度。电动汽车换电站具有受可调度时间约束影响小等特点,与个体电动汽车相比较易实现充电调度。根据换电站的特点以换电站各时刻的充电功率为控制对象,建立多目标的调度策略数学模型,并采用自适应变异的粒子群算法求解以减小标准粒子群容易早熟对优化结果的影响,得到次日优化充电计划。基于某地区负荷曲线进行算例仿真,验证了算法的有效性,比较了单目标优化和多目标优化的调度策略对负荷曲线的影响。结果表明,换电站充电调度策略采用多目标优化时能够克服单目标优化填充"最低谷"效果差的问题,有效地降低电网峰谷差,达到平稳负荷波动的效果。 展开更多
关键词 电动汽车 换电池站 充电调度 多目标优化 自适应变异粒子优化算法
在线阅读 下载PDF
基于自适应Tent混沌搜索的粒子群优化算法 被引量:14
20
作者 黄美灵 赵之杰 +4 位作者 浦立娜 吴非 赵美玲 陈浩 陈明哲 《计算机应用》 CSCD 北大核心 2011年第2期485-489,共5页
为解决粒子群优化算法易于陷入局部最优问题,提出基于自适应Tent混沌搜索的粒子群优化算法。应用Tent映射初始化均匀分布的粒群,并以当前整个粒子群迄今为止搜索到的最优位置为基础产生Tent混沌序列,混沌序列的搜索范围采用自适应调整... 为解决粒子群优化算法易于陷入局部最优问题,提出基于自适应Tent混沌搜索的粒子群优化算法。应用Tent映射初始化均匀分布的粒群,并以当前整个粒子群迄今为止搜索到的最优位置为基础产生Tent混沌序列,混沌序列的搜索范围采用自适应调整方法。该方法可以有效避免计算的盲目性,还能够快速搜寻到最优解。实验表明该算法在多个标准测试函数下都超越了同类改进算法。 展开更多
关键词 粒子优化算法 TENT映射 自适应 混沌搜索
在线阅读 下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部