期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
基于差分自回归—随机森林的动车组轮对旋修策略优化研究 被引量:1
1
作者 刘成 朱腾飞 +2 位作者 王紫光 沙智华 张生芳 《铁道机车车辆》 北大核心 2024年第5期132-139,共8页
基于动车组运行里程和轮对尺寸退化过程为非平稳时间序列的特点,将差分自回归移动平均模型(ARIMA)与随机森林算法相结合,对关键尺寸退化趋势影响下的轮对旋修策略优化进行研究。利用ARIMA对运行里程数据进行差分处理,运用基尼系数划分... 基于动车组运行里程和轮对尺寸退化过程为非平稳时间序列的特点,将差分自回归移动平均模型(ARIMA)与随机森林算法相结合,对关键尺寸退化趋势影响下的轮对旋修策略优化进行研究。利用ARIMA对运行里程数据进行差分处理,运用基尼系数划分特征构建随机森林决策树,将轮对历史检测数据划分为训练集和测试集进行训练,以预测均值确定轮对尺寸预测值。以轮对几何尺寸和动力学性能为约束条件,以最长使用寿命、最少旋修次数和平稳性指标为优化目标,构建轮对旋修策略优化模型,并对轮对旋修量和旋修后轮径值进行预测。结果表明,当轮径旋修量为2.5 mm,轮缘厚度在HAi=28.5 mm和HBi=30 mm时旋修策略最佳,轮对寿命可提高31.4%。研究成果可为动车组轮对旋修策略优化提供理论支持。 展开更多
关键词 动车组 轮对旋修 差分自回归移动平均模型 随机森林算法 策略优化
在线阅读 下载PDF
基于ARIMA-LSTM的能量预测算法 被引量:7
2
作者 沈露露 梁嘉乐 周雯 《无线电通信技术》 2023年第1期150-156,共7页
无线传感器网络的节点运行往往受限于能量供给。对太阳能进行采集并转换成电能存储,可以延长节点的使用寿命。对太阳能进行能量预测,可以更好地规划和使用采集到的能量,这有助于节省能源、避免浪费,提升无线传感器网络的生存周期。针对... 无线传感器网络的节点运行往往受限于能量供给。对太阳能进行采集并转换成电能存储,可以延长节点的使用寿命。对太阳能进行能量预测,可以更好地规划和使用采集到的能量,这有助于节省能源、避免浪费,提升无线传感器网络的生存周期。针对太阳能预测,提出一种基于自回归积分移动平均-长短期记忆(Autoregressive Integrated Moving Average-Long Short Term Memory,ARIMA-LSTM)组合模型的能量预测方法。首先,采用ARIMA模型来对太阳辐照数据进行预测,提取数据中的线性分量;然后将过滤后的残差代入LSTM神经网络模型,得到非线性分量的预测;最后将二者进行相加,得到最终的预测结果。仿真实验显示,组合模型比起现有的单一模型,能够有效地提高预测的精度。 展开更多
关键词 自回归积分移动平均算法 LSTM算法 能量预测
在线阅读 下载PDF
基于组合优化算法的短期风电功率预测 被引量:7
3
作者 孙海蓉 张鸽 王瑞珈 《华北电力大学学报(自然科学版)》 CAS 北大核心 2020年第1期33-41,共9页
针对风电功率的长记忆、大波动性特点,提出了一种短期风电功率组合预测算法。利用集合经验模式分解算法在风电功率序列分解过程中添加成对的正负噪声分量,得到的不同复杂度的子序列,提高信号重构精度和分解速度。风电功率子序列的线性... 针对风电功率的长记忆、大波动性特点,提出了一种短期风电功率组合预测算法。利用集合经验模式分解算法在风电功率序列分解过程中添加成对的正负噪声分量,得到的不同复杂度的子序列,提高信号重构精度和分解速度。风电功率子序列的线性分量应用自回归分数积分移动平均模型进行预测,风电功率子序列的非线性分量利用自回归分数积分移动平均模型的残差序列训练优化后的支持向量机模型来进行预测,最后组合得到风电功率预测结果。通过对国内某风电场风电功率数据进行验证,表明该组合预测模型的预测精度更高,且模型具有更好的适应性。 展开更多
关键词 集成经验模态分解 自回归分数积分移动平均模型 支持向量机 短期风电功率预测
在线阅读 下载PDF
基于ARIMA-SVR模型的轨道交通车辆关键设备检修偶换件数量预测
4
作者 王玥龙 刘鹏 姚伟君 《城市轨道交通研究》 北大核心 2025年第3期246-251,共6页
[目的]准确预测轨道交通车辆关键设备检修偶换件数量,可为科学的备件管理提供依据,提高检修经济性。但是现有预测方法准确性不足,预测效果差,因此有必要针对检修偶换件数量预测问题进行深入研究。[方法]根据轨道交通车辆设备检修偶换件... [目的]准确预测轨道交通车辆关键设备检修偶换件数量,可为科学的备件管理提供依据,提高检修经济性。但是现有预测方法准确性不足,预测效果差,因此有必要针对检修偶换件数量预测问题进行深入研究。[方法]根据轨道交通车辆设备检修偶换件数据的特性,构建了检修偶换率(即偶换件更换比例)和检修量的月度时间序列。通过深入研究时间序列预测算法,并对比各类预测算法的效果,综合考虑准确性与泛化能力,提出了一种结合ARIMA(自回归综合移动平均法)与SVR(支持向量回归算法)的计算方法。首先利用ARIMA进行偶换率的预测,然后运用SVR进行检修量的预测,最后结合偶换率与检修量的预测结果来计算偶换件的预测数量。此外,还结合了ARIMA预测的置信区间与无监督聚类IForest(孤立森林)算法,提出了一种偶换率异常检测方法。[结果及结论]以高度阀和制动夹钳单元这两种典型产品的高级修数据为例,对所提出的预测方法进行了验证计算。结果表明,与现有的历史平均法相比,该方法的预测准确性得到了显著提升,并且能够有效地检测出历史和当前的检修偶换率异常情况。 展开更多
关键词 轨道交通车辆 偶换件 自回归综合移动平均 支持向量回归算法 孤立森林
在线阅读 下载PDF
预测节点剩余能量组合预测的OLSR路由算法
5
作者 廖利 《激光杂志》 北大核心 2015年第3期100-103,共4页
针对传统OLSR路由算法存在的不足,提出了一种节点剩余能量组合预测的OLSR路由算法(MOLSR)。首先采用回归移动平均模型对节点的剩余能量线性变化特点进行预测,然后采用神经网络对残差的时间序列建立非线性预测模型,对节点的剩余能量非线... 针对传统OLSR路由算法存在的不足,提出了一种节点剩余能量组合预测的OLSR路由算法(MOLSR)。首先采用回归移动平均模型对节点的剩余能量线性变化特点进行预测,然后采用神经网络对残差的时间序列建立非线性预测模型,对节点的剩余能量非线性变化特点进行预测,最后将两者的预测结果进行相加,并用于进行OLSR路由算法的路由选择中。仿真结果表明,MOLSR路由算法不仅减小了网络开销,有效防止节点剩余能量过早耗完,而且延长了网络的生存时间,具有一定的实际应用价值。 展开更多
关键词 移动自组网络 优化链路状态路由算法 回归移动平均 神经网络
在线阅读 下载PDF
基于ARMA模型和狼群算法的陀螺随机漂移建模研究 被引量:2
6
作者 来凌红 《传感器与微系统》 CSCD 2016年第4期56-58,62,共4页
光纤陀螺的随机漂移误差是影响惯性导航系统精度的关键因素之一,根据陀螺随机漂移数据的数学模型进行补偿,可有效地提高系统精度。在大量实验的基础上建立陀螺随机漂移的自回归移动平均(ARMA)模型,同时使用长自回归模型法求解模型参数,... 光纤陀螺的随机漂移误差是影响惯性导航系统精度的关键因素之一,根据陀螺随机漂移数据的数学模型进行补偿,可有效地提高系统精度。在大量实验的基础上建立陀螺随机漂移的自回归移动平均(ARMA)模型,同时使用长自回归模型法求解模型参数,再对参数进行优化。实验结果证明:经狼群算法优化后的陀螺随机漂移模型更加准确,建模精度相对于传统的时间序列分析法有了较大提高。研究内容对光纤陀螺随机漂移建模精度的提高有较好的参考价值。 展开更多
关键词 陀螺随机漂移 自回归移动平均模型 狼群算法 参数优化
在线阅读 下载PDF
蚁群算法分配权重的燃气日负荷组合预测模型 被引量:7
7
作者 周洲 焦文玲 +1 位作者 任乐梅 田兴浩 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2021年第6期177-183,共7页
为适应城镇燃气日负荷随机性和多变性的特点,克服特定时刻单一负荷预测模型存在实际应用局限性的问题,将5种评价准则用于组合预测前剔除冗余模型,提出了一种建立变全重组合预测模型的方法,通过蚁群算法确定分配权重的组合预测模型,使得... 为适应城镇燃气日负荷随机性和多变性的特点,克服特定时刻单一负荷预测模型存在实际应用局限性的问题,将5种评价准则用于组合预测前剔除冗余模型,提出了一种建立变全重组合预测模型的方法,通过蚁群算法确定分配权重的组合预测模型,使得在一个时段上的燃气日负荷预测精度好于各单一模型.首先对包含诸多随机和模糊等不确定因素的城镇燃气日负荷时变系统和各预测模型特点进行分析;然后确定岭回归分析(Ridge)、差分自回归积分滑动平均模型(ARIMA)、支持向量机回归(SVR)、极端梯度提升树(XGB)共4类单项日负荷预测模型,结合城镇燃气日负荷和模型的特点,分别给出每个模型各项参数的设置和模型的输入向量;用平均相对误差、均方根误差、灰色关联度、相关系数、Theil不等系数为评价准则计算出的综合评价指标剔除冗余模型,最后建立了蚁群算法权重分配的组合预测模型.预测实例表明,蚁群算法分配权重的燃气日负荷组合预测模型长期的综合预测效果要优于任意单项模型,相比于单一模型而言,组合预测模型的稳定性和容错率更高,具备较强的泛化能力. 展开更多
关键词 城镇燃气日负荷 组合预测 回归 差分自回归积分滑动平均 支持向量机回归 极端梯度提升树 蚁群算法
在线阅读 下载PDF
基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型研究 被引量:4
8
作者 程小龙 张斌 +1 位作者 刘相杰 刘陶胜 《人民黄河》 CAS 北大核心 2024年第1期146-150,共5页
为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分... 为提高大坝变形预测精度,针对大坝变形数据的复杂性和非线性等特征,基于自适应噪声完备集成经验模态分解(CEEMDAN)、数据处理群集法(GMDH)和差分自回归移动平均模型算法(ARIMA)进行大坝变形预测研究。采用CEEMDAN将大坝变形原始数据分解为高频随机分量、中频周期分量和低频趋势分量,再分别采用GMDH模型、ARIMA模型对高中频分量、低频分量进行预测,建立基于CEEMDAN-GMDH-ARIMA的大坝变形预测模型。以江西上犹江水电站为例,将该模型预测结果与反向传播(BP)、径向基函数(RBF)、GMDH和CEEMDAN-GMDH模型的预测结果进行对比分析。结果表明:CEEMDAN-GMDH-ARIMA模型的均方根误差(E_(RMS))、平均绝对误差(E_(MA))、相关系数(r)分别为0.048 mm、0.035 mm、0.994,均优于BP、RBF、GMDH、CEEMDAN-GMDH模型,模型预测效果最好,能够很好地体现监测点水平位移变化趋势。 展开更多
关键词 自适应噪声完备集成经验模态分解 数据处理群集法 差分自回归移动平均模型算法 大坝 变形预测 江西上犹江水电站
在线阅读 下载PDF
基于ARIMA-PSO-LSTM的太阳能预测 被引量:2
9
作者 沈露露 黄晋浩 +1 位作者 花敏 周雯 《无线电通信技术》 北大核心 2024年第4期771-778,共8页
太阳能是新兴的可再生能源之一,可将其转化为电能以供无线传感器网络(Wireless Sensor Networks, WSN)使用,对太阳能进行预测可以有效地利用能量,从而达到节省能源、维持网络持续稳定运行的目的。提出了一种新的组合预测模型来预测太阳... 太阳能是新兴的可再生能源之一,可将其转化为电能以供无线传感器网络(Wireless Sensor Networks, WSN)使用,对太阳能进行预测可以有效地利用能量,从而达到节省能源、维持网络持续稳定运行的目的。提出了一种新的组合预测模型来预测太阳能辐照强度,其中改进的粒子群优化(Particle Swarm Optimization, PSO)算法被引入寻找长短期记忆(Long Short Term Memory, LSTM)神经网络模型的最优参数。选取自回归差分移动平均(Auto-Regressive Integrated Moving Average, ARIMA)模型来预测太阳辐照数据中的线性分量;采用PSO算法来优化LSTM神经网络模型的超参数,有助于提高模型预测的精度和鲁棒性;采用优化的LSTM神经网络模型来预测数据中的非线性分量;最后将两个模型的预测结果进行叠加。实验结果表明,新的组合模型比ARIMA、LSTM等模型,具有更高的预测精度。 展开更多
关键词 自回归差分移动平均模型 长短期记忆神经网络模型 粒子群优化算法 能量预测算法
在线阅读 下载PDF
交叉口车辆行为感知在线半监督混合方法
10
作者 张海伦 王广玮 +3 位作者 孟庆文 许庆 王建强 李克强 《汽车工程》 EI CSCD 北大核心 2024年第11期1993-2004,共12页
自动驾驶感知系统须对目标车辆运动进行感知,以制定合理交互决策。针对行为感知在时间上的滞后性和数据中可能存在的波动和异常值导致感知准确率差的问题,本文提出一种在线半监督混合方法。首先,采用自回归积分移动平均和在线梯度下降... 自动驾驶感知系统须对目标车辆运动进行感知,以制定合理交互决策。针对行为感知在时间上的滞后性和数据中可能存在的波动和异常值导致感知准确率差的问题,本文提出一种在线半监督混合方法。首先,采用自回归积分移动平均和在线梯度下降优化器设计基于数据驱动的车辆运动状态在线预测算法。然后,构建基于微簇的初始模型,并以K近邻为基分类器建立集成学习策略,设计错误驱动代表性学习和指数衰减策略实现对初始模型的迭代更新。最后,基于驾驶模拟平台采集了验证所提算法有效性的实验数据。结果表明,所提出的方法对于车辆行为波动具有快速适应性,在线预测算法可准确预测车辆运动趋势,行为感知算法对于不同预测时间下的车辆行为均有较强适应能力。 展开更多
关键词 自动驾驶 行为预测 自回归积分移动平均 集成学习 半监督学习
在线阅读 下载PDF
基于ARIMA-IPOA-CNN-LSTM的太湖水体溶解氧浓度预测模型
11
作者 杨焕峥 崔业梅 +1 位作者 徐玲 薛洪惠 《水电能源科学》 北大核心 2024年第10期55-59,共5页
为了提高太湖水体中溶解氧浓度(DOC)参数的预测准确性,设计了一种基于ARIMA-IPOA-CNN-LSTM的预测模型。首先,采用差分自回归移动平均模型(ARIMA)捕捉数据的时间序列趋势和季节性特征;其次,引入卷积神经网络(CNN)和长短期记忆网络(LSTM)... 为了提高太湖水体中溶解氧浓度(DOC)参数的预测准确性,设计了一种基于ARIMA-IPOA-CNN-LSTM的预测模型。首先,采用差分自回归移动平均模型(ARIMA)捕捉数据的时间序列趋势和季节性特征;其次,引入卷积神经网络(CNN)和长短期记忆网络(LSTM)模型,分别从数据中学习空间和时间特征;再次,提出了一种改进的鹈鹕优化算法(IPOA)来优化模型参数,算法增加了Logistic混沌映射种群初始化、反向差分进化、萤火虫扰动的方法,CEC2005函数的测试结果显著优于传统鹈鹕优化算法;最后,将“剪枝”模型部署于STM32嵌入式设备。试验结果表明,在溶解氧浓度预测方面,该模型具有高的准确性和鲁棒性,为水环境保护提供了一种高效、可靠的解决方案。 展开更多
关键词 差分自回归移动平均 鹈鹕优化算法 卷积神经网络 水体 溶解氧浓度
在线阅读 下载PDF
组合模型对肺结核发病趋势的预测研究 被引量:11
12
作者 陈银苹 吴爱萍 +6 位作者 余亮科 许雅丽 蒋宁 杨阳 张锦 张静宇 曹燕花 《中国全科医学》 CAS CSCD 北大核心 2014年第21期2452-2456,共5页
目的建立肺结核发病率(1/10万)自回归积分移动平均(ARIMA)-灰色模型(GM)组合模型,并将其应用于肺结核发病率的预测,为及早发现疾病发展趋势和及时采取控制对策提供科学依据。方法收集迁安市2004年1月—2012年12月肺结核月发病率资料,应... 目的建立肺结核发病率(1/10万)自回归积分移动平均(ARIMA)-灰色模型(GM)组合模型,并将其应用于肺结核发病率的预测,为及早发现疾病发展趋势和及时采取控制对策提供科学依据。方法收集迁安市2004年1月—2012年12月肺结核月发病率资料,应用SPSS 13.0软件对肺结核逐月发病率进行ARIMA建模拟合;然后用GM(1,1)模型对其带阈值的残差序列进行修正并构造出组合模型,利用此模型对迁安市2013年肺结核逐月发病率进行预测。结果 ARIMA(0,1,1)(0,1,1)12模型较好地拟合了肺结核的发病情况,模型的所有参数都通过统计学检验;用一阈值为4的GM(1,1)模型对其残差序列进行修正,预测模型通过了精度检验(C=0.573,P=0.805),模型拟合精度为基本合格,ARIMA-GM组合模型的平均绝对误差(MAE)、平均绝对百分比误差(MAPE)都比单个模型小,利用组合模型对2013年肺结核发病率预测。结论 ARIMA-GM组合模型能较好地拟合迁安市肺结核发病情况,且该方法比ARIMA季节乘积模型预测具有更高的精度。预测结果能够对肺结核的早期预测预警模型的建立提供借鉴,从而有针对性地采取相应的控制措施。 展开更多
关键词 结核 预测 自回归积分移动平均模型 灰色模型
在线阅读 下载PDF
基于Storm的电网时间序列数据实时预测框架 被引量:7
13
作者 吴克河 朱亚运 +1 位作者 李皓阳 李权 《计算机工程》 CAS CSCD 北大核心 2017年第4期8-14,共7页
对电网运行产生的时间序列数据展开实时预测研究,提出基于Storm平台和ARIMA模型的预测框架。分析不同类型电网时序数据的特点,预设拟合模型以降低模型构建的盲目性,缩短预测时间,同时设计基于HBase的新型时序数据存储模式加快数据检索... 对电网运行产生的时间序列数据展开实时预测研究,提出基于Storm平台和ARIMA模型的预测框架。分析不同类型电网时序数据的特点,预设拟合模型以降低模型构建的盲目性,缩短预测时间,同时设计基于HBase的新型时序数据存储模式加快数据检索速度。通过对海量的时序数据源进行并发预测,比较不同数据样本对预测值的影响并实时分析预测误差。经实例从预测精度、运算速度、占用资源3个角度验证了该框架的有效性与实用性。 展开更多
关键词 时间序列数据 实时预测 Storm平台 自回归积分移动平均模型 电网 大数据
在线阅读 下载PDF
基于ARIMA-GM组合模型的湖北省电力需求预测研究 被引量:8
14
作者 王莉琳 张维 +3 位作者 赖敏 向铁元 杨再鹤 周波 《中国农村水利水电》 北大核心 2013年第4期101-105,共5页
通过分析湖北省历年电力消费量,利用灰色模型(GM)和自回归积分移动平均(ARIMA)模型分别对2012-2020期间的湖北省电力需求量进行了预测,然后通过方差倒数法进行组合预测,得到了精度更高的预测结果。通过分析整个预测过程及结果,该方法易... 通过分析湖北省历年电力消费量,利用灰色模型(GM)和自回归积分移动平均(ARIMA)模型分别对2012-2020期间的湖北省电力需求量进行了预测,然后通过方差倒数法进行组合预测,得到了精度更高的预测结果。通过分析整个预测过程及结果,该方法易于操作,精度较高,是一种对电力需求预测方法有益的探索。 展开更多
关键词 时间序列 灰色模型 自回归积分移动平均模型 方差倒数法
在线阅读 下载PDF
基于ARIMA的磨削颤振预测方法 被引量:4
15
作者 王民 冯猛 +1 位作者 姚子良 昝涛 《北京工业大学学报》 CAS CSCD 北大核心 2016年第4期609-613,共5页
磨削颤振会加剧砂轮的磨损并对磨削加工质量造成严重影响,甚至会对磨床本身造成破坏.为了避免磨削颤振的发生,提高磨削加工效率,通过对磨削过程振动信号进行分析,提取固有频率频带能量百分比R作为磨削颤振的特征量,提出一种基于自回归... 磨削颤振会加剧砂轮的磨损并对磨削加工质量造成严重影响,甚至会对磨床本身造成破坏.为了避免磨削颤振的发生,提高磨削加工效率,通过对磨削过程振动信号进行分析,提取固有频率频带能量百分比R作为磨削颤振的特征量,提出一种基于自回归积分移动平均(autoregression integrated moving average,ARIMA)模型的磨削颤振预测方法.试验结果表明:在磨削过程中,固有频率频带能量会随着磨削状态的变化而变化,利用稳定磨削状态下的固有频率频带能量百分比建立ARIMA预测模型,预测结果与真实值十分接近,能够准确预测磨削颤振的发生. 展开更多
关键词 磨削颤振 自回归积分移动平均模型(ARIMA) 频带能量比
在线阅读 下载PDF
全球稀土消费预测模型研究 被引量:5
16
作者 周扬 张钦礼 +1 位作者 杨志辉 于凤玲 《工业技术经济》 CSSCI 北大核心 2013年第7期110-116,共7页
为了准确把握全球稀土消费变化,本文在分析单整自回归移动平均(ARIMA)模型与非线性灰色伯努利(NGBM)模型特点的基础上,采用粒子群优化算法(PSO)对非线性灰色伯努利模型的参数进行了优选,建立了ARIMA耦合PSO-NGBM的全球稀土消费的时间序... 为了准确把握全球稀土消费变化,本文在分析单整自回归移动平均(ARIMA)模型与非线性灰色伯努利(NGBM)模型特点的基础上,采用粒子群优化算法(PSO)对非线性灰色伯努利模型的参数进行了优选,建立了ARIMA耦合PSO-NGBM的全球稀土消费的时间序列预测模型。该模型将全球稀土消费时间序列的数据结构分解为线性自相关主体和非线性残差两部分,首先用ARIMA模型预测序列的线性主体,然后用PSO-NGBM模型对其非线性残差进行估计,最终合成为整个序列的预测结果。预测结果表明,耦合模型的预测准确率显著高于单一的ARIMA模型的预测准确率,从而证实了耦合模型用于全球稀土消费预测的有效性。 展开更多
关键词 单整自回归移动平均 非线性灰色伯努利 粒子群优化算法 稀土消费预测 耦合模型
在线阅读 下载PDF
基于ARIMA与WASDN加权组合的时间序列预测 被引量:6
17
作者 张雨浓 劳稳超 +2 位作者 丁玮翔 王英 叶成绪 《计算机应用研究》 CSCD 北大核心 2015年第9期2630-2633,2638,共5页
为了提高时间序列预测方法的预测精度以及增强其适用性,提出一种ARIMA-WASDN加权组合方法。该方法同时使用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型与配备权值及结构确定(weights and structure determ... 为了提高时间序列预测方法的预测精度以及增强其适用性,提出一种ARIMA-WASDN加权组合方法。该方法同时使用差分自回归移动平均(autoregressive integrated moving average,ARIMA)模型与配备权值及结构确定(weights and structure determination,WASD)算法的幂激励前向神经网络(WASDN)对时间序列进行建模、测试以及预测。根据测试结果,将ARIMA与WASDN进行加权组合。数值实验结果显示,所提出的ARIMA-WASDN加权组合方法的预测精度高于ARIMA或WASDN单独使用时的预测精度,验证了该方法在时间序列预测方面的有效性和优越性。 展开更多
关键词 差分自回归移动平均模型 权值与结构确定算法 幂激励前向神经网络 时间序列预测 加权组合
在线阅读 下载PDF
基于ARIMA和GA-Elman神经网络的新疆年降水耦合预测研究 被引量:3
18
作者 黄华 蔡仁 +1 位作者 努尔古丽.艾力 穆振侠 《新疆农业科学》 CAS CSCD 北大核心 2015年第6期1093-1098,共6页
【目的】提高降水预报的预测精度,准确预测一个地区未来的降水量,可以提高该地区防灾减灾的能力,更好地为工农业生产生活提供决策参考。【方法】以年降水时间序列为研究对象,利用差分自回归移动平均(ARIMA)和GA-Elman神经网络技术建立... 【目的】提高降水预报的预测精度,准确预测一个地区未来的降水量,可以提高该地区防灾减灾的能力,更好地为工农业生产生活提供决策参考。【方法】以年降水时间序列为研究对象,利用差分自回归移动平均(ARIMA)和GA-Elman神经网络技术建立一种耦合预测模型。该模型首先根据年降水时间序列建立ARIMA模型,拟合它的线性结构部分,基于原始降水序列和ARIMA模型的预测值、残差序列,利用GA-Elman神经网络技术进行耦合建模。将该模型应用于新疆年降水量的预测预报,并与单一的ARIMA模型、GA-Elman神经网络模型进行比较。【结果】耦合模型的归一化均方误差、平均绝对误差、后验差比值及小误差概率分别为0.287,9.581,0.241和1,均优于ARIMA模型、GA-Elman神经网络模型,预测精度得到了明显的提高,预测精度等级为好。【结论】基于ARIMA和GA-Elman神经网络的耦合预测模型具有更高的预测精度,可用于新疆的年降水量预报。 展开更多
关键词 年降水 差分自回归移动平均 神经网络 遗传算法 耦合预测
在线阅读 下载PDF
青岛邮船产业的客源规模及经济效益预测 被引量:2
19
作者 李建丽 真虹 +1 位作者 程爵浩 徐凯 《上海海事大学学报》 北大核心 2010年第3期78-85,共8页
为合理估算青岛邮船产业经济效应,运用自回归积分移动平均(Autoregressive IntegratedMoving Average,ARIMA)法与经验预测相结合的方法,对青岛2010─2020年重要时间节点的客源规模进行预测;利用预测数据分析青岛邮船产业经济效益.得出结... 为合理估算青岛邮船产业经济效应,运用自回归积分移动平均(Autoregressive IntegratedMoving Average,ARIMA)法与经验预测相结合的方法,对青岛2010─2020年重要时间节点的客源规模进行预测;利用预测数据分析青岛邮船产业经济效益.得出结论:2010—2020年青岛邮船产业的重点应放在国际邮船上;青岛应联合国际邮船公司,共同寻求"多港挂靠"政策的支持,吸引目前以上海和天津作为母港的国际邮船挂靠. 展开更多
关键词 邮船产业 自回归积分移动平均 经济效益
在线阅读 下载PDF
基于改进PSO-ARIMA模型的船舶纵摇角度预测 被引量:7
20
作者 王培良 张婷 肖英杰 《上海海事大学学报》 北大核心 2021年第1期39-43,共5页
针对自回归移动平均(auto regressive moving average,ARMA)模型在船舶纵摇角度预测时不具有普遍适用性问题,提出使用自回归综合移动平均(auto regressive integrated moving average,ARIMA)模型进行纵摇角度预测,并采用改进粒子群优化(... 针对自回归移动平均(auto regressive moving average,ARMA)模型在船舶纵摇角度预测时不具有普遍适用性问题,提出使用自回归综合移动平均(auto regressive integrated moving average,ARIMA)模型进行纵摇角度预测,并采用改进粒子群优化(particle swarm optimization,PSO)算法对模型定阶。对纵摇角度值序列数据进行平稳性检验和差分运算,确定ARIMA模型的适用性;采用具有针对性适应度评价函数的PSO算法进行模型定阶,并优化PSO算法的权重计算方法。通过仿真对比验证本文所提方法的科学性和有效性。仿真结果表明:采用改进PSO算法进行模型定阶的方法能够有效提升模型的预测精度,具有更好的预测效果。 展开更多
关键词 自回归综合移动平均(ARIMA)模型 粒子群优化(PSO)算法 船舶纵摇 纵摇预测
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部