期刊文献+
共找到435篇文章
< 1 2 22 >
每页显示 20 50 100
基于自回归与长短期记忆网络混合模型的热电偶动态补偿方法研究 被引量:3
1
作者 崔志文 李文军 +1 位作者 虞思思 金敏俊 《中国测试》 CAS 北大核心 2023年第9期63-72,共10页
热电偶在动态温度测量时由于热惯性存在动态误差。为补偿热电偶的动态误差,提出一种基于自回归与长短期记忆网络混合模型的补偿算法。该算法通过自回归模型对热电偶动态响应进行辨识,再由长短期记忆网络作为非线性补偿器校正动态误差。... 热电偶在动态温度测量时由于热惯性存在动态误差。为补偿热电偶的动态误差,提出一种基于自回归与长短期记忆网络混合模型的补偿算法。该算法通过自回归模型对热电偶动态响应进行辨识,再由长短期记忆网络作为非线性补偿器校正动态误差。采用不同强度的高斯白噪声模拟噪声环境,仿真构建热电偶模拟测量数据集。在模拟测量数据集上对算法做验证。计算结果表明,该算法在不同噪声环境下均能有效地减少动态误差。搭建热电偶动态温度测量实验平台,以K型镍铬/镍硅热电偶为实验对象,取得实验测量数据集。实验和计算结果表明,经算法补偿后的热电偶动态响应得到改善,平均动态误差为0.0028,标准差为0.0102。 展开更多
关键词 动态温度测量 热电偶 动态误差补偿 自回归与长短期记忆网络混合模型
在线阅读 下载PDF
基于时间卷积网络和长短期记忆网络的混合模型海面温度预测研究
2
作者 赵煜 王律钧 +1 位作者 姚志刚 陈文凯 《中国海洋大学学报(自然科学版)》 北大核心 2025年第9期147-157,共11页
本研究提出了一种基于时间卷积网络(TCN)和长短期记忆网络(LSTM)的混合模型——TCN-LSTM,以提高海表温度(SST)的预测精度。通过在四个海洋站的敏感性实验,分析了超参数对模型稳定性的影响。通过控制迭代次数、TCN卷积核数量和LSTM神经... 本研究提出了一种基于时间卷积网络(TCN)和长短期记忆网络(LSTM)的混合模型——TCN-LSTM,以提高海表温度(SST)的预测精度。通过在四个海洋站的敏感性实验,分析了超参数对模型稳定性的影响。通过控制迭代次数、TCN卷积核数量和LSTM神经元数量等关键参数,并运用方差分析(ANOVA)方法,本文发现所有p值均大于0.05,这表明不同参数对平均绝对百分比误差(MAPE)的影响不显著,支持了模型的相对稳定性。TCN-LSTM模型结合了TCN在局部特征提取和LSTM在捕获长期依赖关系方面的优势,使其能够有效学习SST数据中的重要特征。在未来7 d的海面温度预测中,TCN-LSTM模型展现出优越的适应性和泛化能力,其相关评价指标表现优异。此外,通过比较不同超参数组合下的预测性能,验证了模型的一致性与可靠性。本研究为SST预测提供了一种新颖的方法论框架,尽管主要集中于单变量时间序列模型,但未来研究将考虑多变量模型和时空特征提取,以进一步提升整体预测精度。 展开更多
关键词 海温预测 深度学习模型 时间卷积网络 长短期记忆网络
在线阅读 下载PDF
基于改进长短期记忆网络模型的水库库区水温模拟 被引量:1
3
作者 郑铁刚 吴茂喜 +3 位作者 张迪 金瑾 林俊强 孙双科 《农业工程学报》 北大核心 2025年第3期144-153,共10页
水温是影响水库水生态系统的“主因子”,了解库区水温分布及预测未来的水温变化对保护水库生态具有重要的意义。针对水库水温结构复杂、实时预测困难的技术问题,该研究通过在传统的长短期记忆网络模型(long short-term memory,LSTM)中... 水温是影响水库水生态系统的“主因子”,了解库区水温分布及预测未来的水温变化对保护水库生态具有重要的意义。针对水库水温结构复杂、实时预测困难的技术问题,该研究通过在传统的长短期记忆网络模型(long short-term memory,LSTM)中嵌入相关分析模块自动筛选模型的特征输入,并优化输出维度,提出了一种改进的LSTM模型,并在溪洛渡水库工程开展了模型应用研究,结果表明:1)改进LSTM模型的均方根误差最大值为0.63,纳什效率系数最小值为0.96,表明模型整体性能较好,能够精准地捕捉数据中的长期依赖关系;2)基于改进LSTM模型的库区水温分布预测值和环境流体动力学模型(environmental fluid dynamics code,EFDC)模拟值随时间的量值分布及变化规律基本一致,两者的库区表层年际误差值为-1.19~1.04℃,中层年际误差值为-1.06~1.68℃,底层年际误差值为-1.28~1.07℃,年际水温最大相对误差为8.3%;3)相较于EFDC模型多天的模拟时长,改进模型的计算时间缩短至几百秒,计算效率大幅提升,实现了水温分布的快速、实时精准预测。该研究通过改进LSTM模型,实现了深水水库垂向水温的高效预测,研究结果可为分层取水设施的优化调控提供技术支撑。 展开更多
关键词 水温 模拟 改进的长短期网络记忆模型 水温分布 相关性分析 水温预测 人工智能学习
在线阅读 下载PDF
区域化长短期记忆神经网络(LSTM)洪水预报模型研究 被引量:2
4
作者 叶可佳 梁忠民 +4 位作者 陈红雨 钱名开 胡义明 王军 李彬权 《湖泊科学》 北大核心 2025年第2期651-659,共9页
针对水文资料缺乏流域机器学习模型建模困难的问题,本文提出了基于长短期记忆神经网络(LSTM)的区域化洪水预报方法。对水文气候相似区内各流域的水文及地形地貌特征数据进行归一化处理,以消除局地因素的影响,从而构建相似区内建模统一... 针对水文资料缺乏流域机器学习模型建模困难的问题,本文提出了基于长短期记忆神经网络(LSTM)的区域化洪水预报方法。对水文气候相似区内各流域的水文及地形地貌特征数据进行归一化处理,以消除局地因素的影响,从而构建相似区内建模统一数据集,扩大样本数量,为建立乏资料流域洪水预报模型提供了可能。本文选择胶东半岛作为研究区进行应用研究。为验证区域化模型在不同场景中的应用效果,设计了预报流域数据不参与建模,而仅根据区域内其他流域资料建模(区域化模型Ⅰ),以及预报流域的部分数据参与建模(区域化模型Ⅱ)两种情景;此外,选取仅根据预报流域数据训练的单流域模型作为基准模型进行对比分析。结果表明,对本次研究的水文资料短缺流域,两种区域化模型均取得了较好效果,且都优于单流域模型。相较而言,考虑了预报流域数据的区域化模型精度更高,说明在区域化LSTM构建中融入预报流域的数据,可进一步提升区域化模型的精度。研究成果可为乏资料地区的洪水预报提供参考。 展开更多
关键词 长短期记忆神经网络 洪水预报 区域化模型 水文气候相似区 乏资料流域
在线阅读 下载PDF
用户响应机制下基于长短期记忆网络的负荷聚合商用电模型
5
作者 朱虹 孟祥娟 +4 位作者 孙健 傅鹏 吴寅涛 唐昊 方道宏 《现代电力》 北大核心 2025年第3期550-561,共12页
负荷聚合商(load aggregator,LA)建立自身用电模型,能有效掌握自身响应电网的能力。鉴于LA内部用户众多,且用户响应具有随机性,难以建立整体的用电模型。因此,针对包含多类用户的LA,该文提出一种基于长短期记忆网络(long short-term mem... 负荷聚合商(load aggregator,LA)建立自身用电模型,能有效掌握自身响应电网的能力。鉴于LA内部用户众多,且用户响应具有随机性,难以建立整体的用电模型。因此,针对包含多类用户的LA,该文提出一种基于长短期记忆网络(long short-term memory,LSTM)的LA用电模型搭建方法。首先,根据LA内部用户的响应特性,将用户按其激励方式分类,并将日前温度、光照强度、各用户的激励价格和用户的负荷基线等用户特征数据进行聚合,生成训练样本。然后,根据聚合后的训练样本对LSTM进行训练,建立LA特征数据与其用电曲线的映射关系。最后,以包含居民、商业楼宇、充电站、医院四类用户的LA为算例进行验证。结果表明,模型能有效表征LA实施用户需求响应(user demand response,UDR)后的用电行为。 展开更多
关键词 负荷聚合商 用户需求响应 长短期记忆网络 用电模型
在线阅读 下载PDF
基于长短期记忆网络的半参数SEIR模型
6
作者 张静 金彤 《东北师大学报(自然科学版)》 北大核心 2025年第1期46-52,共7页
提出了带有非线性传播函数的半参数SEIR模型以捕获疾病的传播,从理论上分析了模型的基本性质及基本再生数.以新冠感染为例,比较了各国疫情初期的传播函数,得出不同地区人口、防疫措施等因素对疫情传播的影响不同.以印度为例,利用长短期... 提出了带有非线性传播函数的半参数SEIR模型以捕获疾病的传播,从理论上分析了模型的基本性质及基本再生数.以新冠感染为例,比较了各国疫情初期的传播函数,得出不同地区人口、防疫措施等因素对疫情传播的影响不同.以印度为例,利用长短期记忆(LSTM)神经网络对传播函数的离散值进行了拟合,代回半参数SEIR模型后预测出感染人数,所得结果与经典SEIR模型比较,平均绝对百分比误差降低71.73%.因此,半参数SEIR模型对疫情的理论估计更符合实际情况. 展开更多
关键词 SEIR模型 传播函数 半参数 长短期记忆神经网络 新冠感染
在线阅读 下载PDF
基于卷积神经网络-长短期记忆神经网络模型利用光学体积描记术重建动脉血压波信号 被引量:1
7
作者 吴佳泽 梁昊 陈明 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第2期447-458,共12页
目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP... 目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。 展开更多
关键词 连续无创血压监测 容积脉搏波 动脉血压波 卷积神经网络 长短期记忆神经网络 混合神经网络
在线阅读 下载PDF
基于残差双向长短期记忆效应网络模型的电力企业碳排放预测 被引量:4
8
作者 陈齐 许明海 +1 位作者 沈赛燕 郭磊 《环境污染与防治》 CAS CSCD 北大核心 2024年第5期689-693,720,共6页
针对电力企业碳排放核算时间长、连续排放监测系统误差大及传统模型拟合困难等问题,结合电力企业燃料燃烧的特性及现有污染物在线监测结果,成功构建了电力行业碳排放的残差双向长短期记忆效应网络(ResNet-BiLSTM)模型,并以浙江省113家... 针对电力企业碳排放核算时间长、连续排放监测系统误差大及传统模型拟合困难等问题,结合电力企业燃料燃烧的特性及现有污染物在线监测结果,成功构建了电力行业碳排放的残差双向长短期记忆效应网络(ResNet-BiLSTM)模型,并以浙江省113家电力企业的数据为样本进行验证。结果表明:与目前主流数据预测算法逻辑回归(Regression)、循环神经网络(RNN)、反向传播神经网络(BPNN)模型相比,ResNet-BiLSTM模型的平均绝对百分比误差分别低5.7、4.1、2.8百分点,对碳排放量的预测更贴近电力企业核算碳排放波动情况,且预测准确率(96%)最高。ResNet-BiLSTM模型的成功应用不仅为电力企业提供了新的碳排放预测途径,同时为提高相关管理部门的碳排放数据监管效率提供了支持。 展开更多
关键词 残差双向长短期记忆效应网络 模型 碳排放 预测
在线阅读 下载PDF
利用卷积长短期记忆网络预测全球电离层Ne 被引量:1
9
作者 侯世敏 张剑 杜剑平 《信号处理》 CSCD 北大核心 2024年第7期1368-1376,共9页
由于电离层电子密度随时间变化,且空间分布不均匀,对不同频段的无线电波产生延缓和折射,因此电离层电子密度变化是影响短波通信、卫星通信、全球导航卫星系统和其他空间通信质量的一个主要因素,本文对全球电离层电子密度(Number of elec... 由于电离层电子密度随时间变化,且空间分布不均匀,对不同频段的无线电波产生延缓和折射,因此电离层电子密度变化是影响短波通信、卫星通信、全球导航卫星系统和其他空间通信质量的一个主要因素,本文对全球电离层电子密度(Number of electron,Ne)的预测工作对短波通信设备三维射线实时追踪定位提供必要条件。本文采用国际电离层参考模型提供的2016年电离层Ne数据,根据数据的三维空间时间序列特征,搭建了自编码器和卷积长短期记忆(Convolutional Long Short-Term Memory Network,Conv LSTM)网络组成的网络结构,在不引入地球自转周期之外任何先验知识的条件下,对Ne数据进行深度学习并实现预测,首先通过实验对比了SGD、Adagrad、Adadelta、Adam、Adamax和Nadam六种优化算法的性能,又对比了三种预测策略的均方根误差(Root Mean Square Error, RMSE),1h-to-1h预测策略的全球平均RMSE为1.0 NEU(最大值的0.4%),1h-to-24h和24h-to-24h预测策略的全球平均RMSE为6.3 NEU(2.6%)。由实验结果得出以下结论,一是Nadam优化算法更适合电离层Ne的深度学习,二是1h预测策略的性能与之前类似的电离层TEC预测工作(RMSE高于1.5 TECU,最大值的1%)相比有竞争力,但预测时间太短且对数据的实时性要求较高,三是两种24h预测策略虽能实现长期预测但性能不理想,要实现三维空间时间序列的长期高精度预测需要进一步改善神经网络、模型结构和预测策略。 展开更多
关键词 卷积长短期记忆网络 国际电离层参考模型 电离层 NE 预测 深度学习
在线阅读 下载PDF
基于长短期记忆神经网络模型的空气质量预测 被引量:15
10
作者 张冬雯 赵琪 +1 位作者 许云峰 刘滨 《河北科技大学学报》 CAS 2020年第1期67-75,共9页
随着城市化和工业化的快速发展,空气污染问题日益突出,空气质量预测显得尤为重要。当前一些有代表性的研究对空气质量进行实时监测和预报,例如周广强等采用数值预报的方法对中国东部地区的空气质量进行分析,但其实验结果表明该方法难以... 随着城市化和工业化的快速发展,空气污染问题日益突出,空气质量预测显得尤为重要。当前一些有代表性的研究对空气质量进行实时监测和预报,例如周广强等采用数值预报的方法对中国东部地区的空气质量进行分析,但其实验结果表明该方法难以预测非常重的污染;SANKAR等使用多元线性回归对空气质量进行预测,但其实验结果表明线性模型预测精度低、效率慢;P REZ等使用统计方法对空气质量进行预测,实验结果证明统计方法的预测精度比较低;WANG等采用改进的BP神经网络建立了空气质量指数的预测模型,其实验验证了BP神经网络收敛速度慢、容易陷入局部最优解的问题;YANG等利用相邻网格的空气质量浓度效应,建立了基于随机森林的PM 2.5浓度预测模型,通过实验过程证明网格划分程序削弱了后续空气质量分析的质量和效率。这些方法都难以从时间角度建模,其中预测精度低是比较重要的问题。因为预测精度低可能会导致空气质量预测结果出现较大的误差。针对空气质量研究中预测精度低的问题,提出了基于长短期记忆单元(long short-term memory,LSTM)的神经网络模型。该模型使用MAPE,RMSE,R,IA和MAE等指标来检测LSTM神经网络与对比模型的预测性能。由于Delhi和Houston是空气污染程度比较严重的城市,所以使用的实验数据集来自Delhi的Punjabi Bagh监测站2014—2016年的空气质量数据和Houston的Harris County监测站2010—2016年的空气质量数据。LSTM神经网络与多元线性回归和回归模型(SVR)的比较结果表明,LSTM神经网络适应多个变量或多输入的时间序列预测问题,LSTM神经网络具有预测精度高、速度快和较强的鲁棒性等优点。 展开更多
关键词 计算机神经网络 空气质量 长短期记忆单元 深度学习 多元线性回归 回归模型
在线阅读 下载PDF
基于长短期记忆网络与轻梯度提升机的航空发动机大修期内剩余寿命预测 被引量:2
11
作者 杨硕 高成 《航空发动机》 北大核心 2024年第3期87-92,共6页
针对航空发动机大修期内由性能主导的剩余使用寿命预测中复杂设备具有状态变量多、非线性特征严重的特点以及单一模型面临特征提取不充分、预测精度不足等问题,提出一种长短期记忆网络(LSTM)与轻梯度提升机(LightGBM)的组合新模型方法... 针对航空发动机大修期内由性能主导的剩余使用寿命预测中复杂设备具有状态变量多、非线性特征严重的特点以及单一模型面临特征提取不充分、预测精度不足等问题,提出一种长短期记忆网络(LSTM)与轻梯度提升机(LightGBM)的组合新模型方法进行大修期内剩余使用寿命(RUL)预测。通过LSTM对原始数据进行特征提取,将LSTM的输出门中特征提取后的数据作为LightGBM模型的输入进行RUL预测。利用NASA提供的发动机实测数据集进行了仿真试验,实现了对单个发动机的RUL预测,并与其他6种模型预测结果进行对比,对其预测剩余使用寿命的有效性进行验证。结果表明:LSTM和LightGBM组合模型比其他模型的预测误差显著减小,其4组数据集均方根误差仅为12.45、20.23、12.58、21.75。 展开更多
关键词 剩余寿命预测 组合模型 轻梯度提升机 长短期记忆网络 航空发动机
在线阅读 下载PDF
基于双尺度长短期记忆网络的交通事故量预测模型 被引量:10
12
作者 李文书 邹涛涛 +1 位作者 王洪雁 黄海 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第8期1613-1619,共7页
为了降低交通事故的发生、减少财产损失,建立新型交通事故量预测模型.该模型利用双尺度分解方程将原始交通事故时间序列分解为多个子层,并利用长短期记忆(LSTM)网络对得到的低频子层进行预测;利用双尺度重构方程将低频子层的预测结果进... 为了降低交通事故的发生、减少财产损失,建立新型交通事故量预测模型.该模型利用双尺度分解方程将原始交通事故时间序列分解为多个子层,并利用长短期记忆(LSTM)网络对得到的低频子层进行预测;利用双尺度重构方程将低频子层的预测结果进行重构.分别构建LSTM预测模型、门控循环单元(GRU)预测模型、自编码(SAEs)预测模型和双尺度长短期记忆网络(DS-LSTM)预测模型,利用这4个预测模型对2个数据集进行预测.结果表明,本研究模型相较其他模型能够有效预测交通事故时间序列,且具有较强的鲁棒性.对于2个数据集,相较于原始的LSTM模型,DS_LSTM预测模型预测准确度分别提高6%、28%;对2个不同数据库(利兹和UK)的测试表明本研究模型具有较好的泛化性能. 展开更多
关键词 交通事故 预测模型 长短期记忆网络 双尺度分解 双尺度重构
在线阅读 下载PDF
基于长短期记忆生成对抗网络的小麦品质多指标预测模型 被引量:9
13
作者 蒋华伟 张磊 《电子与信息学报》 EI CSCD 北大核心 2020年第12期2865-2872,共8页
小麦多生理生化指标变化趋势反映了储藏品质的劣变状态,预测多指标时序数据会因关联性及相互作用而产生较大误差,为此该文基于长短期记忆网络(LSTM)和生成式对抗网络(GAN)提出一种改进拓扑结构的长短期记忆生成对抗网络(LSTM-GAN)模型... 小麦多生理生化指标变化趋势反映了储藏品质的劣变状态,预测多指标时序数据会因关联性及相互作用而产生较大误差,为此该文基于长短期记忆网络(LSTM)和生成式对抗网络(GAN)提出一种改进拓扑结构的长短期记忆生成对抗网络(LSTM-GAN)模型。首先,由LSTM预测多指标不同时序数据的劣变趋势;其次,根据多指标的关联性并结合GAN的对抗学习方法来降低综合预测误差;最后通过优化目标函数及训练模型得出多指标预测结果。经实验分析发现:小麦多指标的长短期时序数据的变化趋势不同,进一步优化模型结构及训练时序长度可有效降低预测结果的误差;特定条件下小麦品质过快劣变会使多指标预测误差增大,因此应充分考虑储藏期环境变化对多指标数据的影响;LSTM-GAN模型的综合误差相对于仅使用LSTM预测降低了9.745%,并低于多种对比模型,这有助于提高小麦品质多指标预测及分析的准确性。 展开更多
关键词 长短期记忆网络 生成式对抗网络 小麦多指标 预测模型
在线阅读 下载PDF
基于图神经网络和长短期记忆模型的房价预测方法
14
作者 刘歆 杜红力 温道洲 《计算机应用研究》 CSCD 北大核心 2023年第11期3282-3288,共7页
针对目前仅单独考虑价格序列中样本的趋势或仅考虑多个关联属性与价格间的函数关系,而不能更准确地进行房价预测的问题,构建了时空注意力图卷积长短期记忆模型AG-LSTM,包含局部特征提取模块、区域特征提取模块、复合预测模块。局部特征... 针对目前仅单独考虑价格序列中样本的趋势或仅考虑多个关联属性与价格间的函数关系,而不能更准确地进行房价预测的问题,构建了时空注意力图卷积长短期记忆模型AG-LSTM,包含局部特征提取模块、区域特征提取模块、复合预测模块。局部特征提取模块分别使用同构图和异构图神经网络提取各小区及价格关系属性、各小区和配套邻居节点相关性的特征信息;区域特征提取模块先对邻近小区节点进行聚类,再结合图注意力网络获得小区节点对所属区域的重要性程度,建立区域与小区之间的映射矩阵,根据小区节点信息和映射矩阵得到区域特征;复合预测模块使用长短期记忆模型对由局部特征和区域特征组成的复合特征进行时序建模,实现房价预测。以链家网北京房价数据进行了实验,结果表明AG-LSTM预测结果优于已有基线模型。该模型同时挖掘了小区间位置关系、小区与其配套间位置关系、多个关联属性、价格时序趋势对房屋价格的影响,较好地实现了房屋价格的预测。 展开更多
关键词 房价预测 图卷积网络 长短期记忆模型 时空注意力
在线阅读 下载PDF
基于特征优化和混合改进灰狼算法优化BiLSTM网络的短期光伏功率预测 被引量:4
15
作者 赵如意 王晓辉 +3 位作者 郑碧煌 李道兴 高毅 郭鹏天 《电网技术》 北大核心 2025年第1期209-222,I0080-I0084,共19页
为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首... 为解决光伏序列的强噪音干扰以及单一模型在光伏功率预测方面精度偏低和泛化性较差的问题,提出了一种基于特征优化和混合改进灰狼算法优化双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)的短期光伏功率预测方法。首先,运用互信息算法进行输入数据的变量选择,以消除冗余变量。其次,通过互补集合经验模态分解和改进的小波阈值算法对筛选后的数据进行特征重构,旨在降低数据中的噪声干扰并完成输入变量的特征优化。随后,结合改进的Tent混沌映射、非线性递减因子、动态权重策略和差分进化算法对标准灰狼优化算法进行混合优化,以确定双向长短期记忆神经网络的最优超参数组合,并引入注意力机制以挖掘数据中的关键时序信息,最终构建出一种新型的短期光伏功率预测模型。仿真实验表明,相较于最小二乘支持向量机、长短期记忆网络和双向长短期记忆网络,所提模型在晴天、多云、阴天和降雨等不同工况下的均方根误差平均分别降低了12.45%、7.95%和5.37%,显示出优秀的预测性能、良好的泛化能力和潜在的工程应用价值。 展开更多
关键词 变量选择 互补集合经验模态分解 特征重构 混合改进优化灰狼算法 双向长短期记忆网络 注意力机制
在线阅读 下载PDF
基于长短期记忆网络和LightGBM组合模型的短期负荷预测 被引量:92
16
作者 陈纬楠 胡志坚 +2 位作者 岳菁鹏 杜一星 齐祺 《电力系统自动化》 EI CSCD 北大核心 2021年第4期91-97,共7页
短期负荷预测是电网安全调度与平稳运行的基础,为进一步提升负荷预测的精度,提出了基于长短期记忆(LSTM)网络和轻梯度提升机(LightGBM)的组合预测模型。首先,根据LSTM网络和LightGBM模型的输入结构,将预处理后的负荷数据、温度数据、日... 短期负荷预测是电网安全调度与平稳运行的基础,为进一步提升负荷预测的精度,提出了基于长短期记忆(LSTM)网络和轻梯度提升机(LightGBM)的组合预测模型。首先,根据LSTM网络和LightGBM模型的输入结构,将预处理后的负荷数据、温度数据、日期数据以及节假日信息分别输入2个模型中,通过训练得出各自的预测结果。然后,采用最优加权组合法确定权重系数,并得出组合模型的预测值。最后,采用实际负荷数据进行算例分析,结果表明所提方法能够有效结合2种模型的优点,在保留对时序数据整体感知的同时兼顾非连续特征的有效信息,与其他模型相比具有更高的预测精度。 展开更多
关键词 短期负荷预测 长短期记忆网络 轻梯度提升机 最优加权组合法 组合模型
在线阅读 下载PDF
基于相关性分析和长短期记忆网络分位数回归的短期公共楼宇负荷概率密度预测 被引量:45
17
作者 杨秀 陈斌超 +1 位作者 朱兰 方陈 《电网技术》 EI CSCD 北大核心 2019年第9期3061-3070,共10页
公共楼宇是智能电网用电环节需求响应的重要组成部分,在强不确定性环境下,为了提高公共楼宇短期负荷预测的精度,并能更好反映楼宇负荷的不确定性。提出了一种集合多维尺度分析技术(multidimensional scaling,MDS),基于Copula函数相关性... 公共楼宇是智能电网用电环节需求响应的重要组成部分,在强不确定性环境下,为了提高公共楼宇短期负荷预测的精度,并能更好反映楼宇负荷的不确定性。提出了一种集合多维尺度分析技术(multidimensional scaling,MDS),基于Copula函数相关性测度、长短期记忆网络分位数回归(quantile regression long short-term memory,QRLSTM)和核密度估计(kernel density estimation,KDE)的短期公共楼宇负荷概率密度预测的方法。首先采用MDS技术对楼宇群进行初步划分,再通过基于Copula函数的相关性测度方法定量计算影响因素(外界天气、人类活动)与目标楼宇负荷的相关程度;其次,运用QRLSTM回归模型预测未来不同分位数上的负荷值。最后,通过核密度估计得到未来任意时刻预测点的概率密度函数。实验结果表明,综合考虑强相关影响因素,并结合QRLSTM回归和KDE技术,能够更好地解决短期公共楼宇负荷概率密度预测问题。 展开更多
关键词 楼宇负荷概率预测 强相关因素 多维尺度分析 COPULA函数 长短期记忆网络分位数回归 核密度估计
在线阅读 下载PDF
基于CNN-LSTM混合网络的新型配电网异常数据检测模型 被引量:1
18
作者 王冰梅 张冶 +2 位作者 李书斌 回茜 张雯舒 《太阳能学报》 北大核心 2025年第5期243-250,共8页
为提升包含分布式光伏的新型配电网异常数据检测精确率,降低异常数据检测虚警率,提出一种基于卷积神经网络-长短期记忆网络(CNN-LSTM)混合网络的新型配电网异常数据检测方法。首先,针对新型配电网采集的异构数据,通过新型配电网数据组... 为提升包含分布式光伏的新型配电网异常数据检测精确率,降低异常数据检测虚警率,提出一种基于卷积神经网络-长短期记忆网络(CNN-LSTM)混合网络的新型配电网异常数据检测方法。首先,针对新型配电网采集的异构数据,通过新型配电网数据组成的信息传感网络,建立新型配电网多能源数据同构模型;然后,将卷积神经网络和长短期记忆网络结合,提出基于CNN-LSTM混合网络的异常数据检测方法,确定能够对新型配电网异常数据检测结果评价的相关指标。最后,参考新型配电网历史数据,对比分析CNN-LSTM混合网络与其他算法下的新型配电网异常数据检测性能。仿真结果表明,基于CNN-LSTM混合网络的新型配电网异常数据检测性能,在不同划分的数据集上表现更稳定,对异常数据的检测结果更准确。 展开更多
关键词 神经网络模型 长短期记忆 异常检测 数据处理 分布式光伏 配电网
在线阅读 下载PDF
基于小波分解-长短期记忆网络预测模型的酱卤肉制品安全预测分析 被引量:6
19
作者 尹佳 陈翔 +4 位作者 董曼 陈锂 郭鹏程 张涛 文红 《食品科学》 EI CAS CSCD 北大核心 2022年第3期121-128,共8页
为实现酱卤肉制品安全风险精准预警,本研究基于2014—2019年全国酱卤肉制品历史抽样检验数据信息,尝试将小波分解和长短期记忆网络(long short-term memory,LSTM)模型相结合,构建了全国31个省份酱卤肉制品安全风险预测模型。结果表明,... 为实现酱卤肉制品安全风险精准预警,本研究基于2014—2019年全国酱卤肉制品历史抽样检验数据信息,尝试将小波分解和长短期记忆网络(long short-term memory,LSTM)模型相结合,构建了全国31个省份酱卤肉制品安全风险预测模型。结果表明,小波分解-LSTM预测模型对酱卤肉制品安全风险预测有较高的准确率,以湖北省为例,预测准确率为0.99,全国31个省份的平均准确率为0.95,标准偏差为0.029,整体准确率较高,且准确率波动较小,说明建立的小波分解-LSTM模型可以适用于酱卤肉制品安全风险等级的精准预测,可为日常监管和食品安全风险预警提供技术支撑。 展开更多
关键词 酱卤肉制品 风险预测模型 小波分解 长短期记忆网络
在线阅读 下载PDF
基于经验模态分解与投资者情绪的长短期记忆网络股票价格涨跌预测模型 被引量:4
20
作者 翁晓健 林旭东 赵帅斌 《计算机应用》 CSCD 北大核心 2022年第S02期296-301,共6页
针对传统的基于统计学的回归股票预测模型难以表征多个变量之间的关系,预测出的股票价格趋势误差较大,提出一种基于经验模态分解(EMD)与投资者情绪的长短期记忆(LSTM)神经网络股票价格涨跌预测模型。首先,将股票收盘价通过EMD分解得到... 针对传统的基于统计学的回归股票预测模型难以表征多个变量之间的关系,预测出的股票价格趋势误差较大,提出一种基于经验模态分解(EMD)与投资者情绪的长短期记忆(LSTM)神经网络股票价格涨跌预测模型。首先,将股票收盘价通过EMD分解得到若干个具有不同时间尺度的局部特征信号的本征模函数(IMF);其次,通过引入改进的股票领域情感词典,对东方财富网股吧的帖子,进行上一个股票交易日收盘后和下一个股票交易日开盘前的投资者情感分析,得到下一个股票交易日的投资者情绪指标;最后,将基础的股票基本行情数据、经过EMD得到的IMF以及投资者情绪指标加入LSTM神经网络预测下一个交易日的股票涨跌。仿真实验结果表明,在2019年1月至2021年9月的牧原股份(002714)股票数据上,与单独使用LSTM模型相比,改进后的LSTM模型的预测准确率提高了12.25个百分点,在预测为涨的F1值和预测为跌的F1值上分别提高了1.2个百分点和25.21个百分点。由此可见,基于EMD与投资者情绪的LSTM股票价格涨跌预测模型有效提高了预测精度,为股票市场的涨跌预测提供了一种有效的实验方法。 展开更多
关键词 股票预测模型 机器学习 投资者情绪 经验模态分解 长短期记忆神经网络
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部