为了减少复杂环境因素对电力负荷超短期预测效果的影响,提高算法的预测精度和运算效率,该文提出一种基于聚类经验模态分解(clusterempiricalmodedecomposition,CEMD)的卷积神经网络和长短期记忆网络(convolutional neural network and l...为了减少复杂环境因素对电力负荷超短期预测效果的影响,提高算法的预测精度和运算效率,该文提出一种基于聚类经验模态分解(clusterempiricalmodedecomposition,CEMD)的卷积神经网络和长短期记忆网络(convolutional neural network and long short term memory network,CNNLSTM)混合预测算法。该算法首先通过经验模态分解法将负荷数据分解为平稳性好、规律性强的若干本征模态函数(intrinsic mode functions,IMF)和残差(residual,Res)。其次为了简化后续模型的计算体量,运用k均值聚类方法对分解所得的各分量进行分组集成,同时分析不同聚类数对应的预测效果,选取最优聚类标签构造神经网络输入数据。之后将各组数据分别输入到CNN-LSTM混合神经网络中,利用CNN挖掘数据间的特征形成特征向量,并将其输入到LSTM中进行预测。最后将所有预测结果进行线性相加得到完整预测负荷。通过在真实负荷上进行验证并与现有模型进行比较,所提方法具有更高的预测精度。展开更多
坝肩边坡变形在外部因素影响下呈现出不确定性和随机性,从而不易预测。基于聚类模态分解(EEMD)、样本熵(SE)和改进型粒子群算法优化的最小二乘支持向量机(IPSO LSSVM)方法,提出一种名为EEMD SE IPSO LSSVM的坝肩边坡变形预测模型。首先...坝肩边坡变形在外部因素影响下呈现出不确定性和随机性,从而不易预测。基于聚类模态分解(EEMD)、样本熵(SE)和改进型粒子群算法优化的最小二乘支持向量机(IPSO LSSVM)方法,提出一种名为EEMD SE IPSO LSSVM的坝肩边坡变形预测模型。首先,利用EEMD将原始坝肩边坡变形时间序列分解为若干个不同复杂度的子序列,并基于SE判定各子序列的复杂度,将相近的子序列进行合并重组以减少计算规模;然后,分别对各重组子序列建立IPSO LSSVM预测模型;最后,将各预测分量进行叠加重构,得到最终的大坝变形预测值。以澜沧江苗尾水电站左岸坝肩边坡为例,将BPNN、RBFNN、LSSVM、EEMD SE LSSVM与EEMD SE PSO LSSVM进行对比研究。结果表明,该模型的计算精度优于其他神经网络模型,具有较好的适宜性和稳定性,是一种可靠的坝肩边坡变形预测方法,能够为大坝安全监测提供有价值的参考。展开更多
文摘为了减少复杂环境因素对电力负荷超短期预测效果的影响,提高算法的预测精度和运算效率,该文提出一种基于聚类经验模态分解(clusterempiricalmodedecomposition,CEMD)的卷积神经网络和长短期记忆网络(convolutional neural network and long short term memory network,CNNLSTM)混合预测算法。该算法首先通过经验模态分解法将负荷数据分解为平稳性好、规律性强的若干本征模态函数(intrinsic mode functions,IMF)和残差(residual,Res)。其次为了简化后续模型的计算体量,运用k均值聚类方法对分解所得的各分量进行分组集成,同时分析不同聚类数对应的预测效果,选取最优聚类标签构造神经网络输入数据。之后将各组数据分别输入到CNN-LSTM混合神经网络中,利用CNN挖掘数据间的特征形成特征向量,并将其输入到LSTM中进行预测。最后将所有预测结果进行线性相加得到完整预测负荷。通过在真实负荷上进行验证并与现有模型进行比较,所提方法具有更高的预测精度。
文摘坝肩边坡变形在外部因素影响下呈现出不确定性和随机性,从而不易预测。基于聚类模态分解(EEMD)、样本熵(SE)和改进型粒子群算法优化的最小二乘支持向量机(IPSO LSSVM)方法,提出一种名为EEMD SE IPSO LSSVM的坝肩边坡变形预测模型。首先,利用EEMD将原始坝肩边坡变形时间序列分解为若干个不同复杂度的子序列,并基于SE判定各子序列的复杂度,将相近的子序列进行合并重组以减少计算规模;然后,分别对各重组子序列建立IPSO LSSVM预测模型;最后,将各预测分量进行叠加重构,得到最终的大坝变形预测值。以澜沧江苗尾水电站左岸坝肩边坡为例,将BPNN、RBFNN、LSSVM、EEMD SE LSSVM与EEMD SE PSO LSSVM进行对比研究。结果表明,该模型的计算精度优于其他神经网络模型,具有较好的适宜性和稳定性,是一种可靠的坝肩边坡变形预测方法,能够为大坝安全监测提供有价值的参考。