期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于自适应经验小波分解和深层Wasserstein网络的轴承工况识别 被引量:3
1
作者 左大利 《组合机床与自动化加工技术》 北大核心 2021年第8期11-15,共5页
传统滚动轴承工况识别方法需要对采集到的轴承振动信号进行人工特征提取,提出一种基于自适应经验小波分解(adaptive empirical wavelet decomposition,AEWD)和深层Wasserstein网络(deep Wasserstein network,DWN)的工况识别方法。首先,... 传统滚动轴承工况识别方法需要对采集到的轴承振动信号进行人工特征提取,提出一种基于自适应经验小波分解(adaptive empirical wavelet decomposition,AEWD)和深层Wasserstein网络(deep Wasserstein network,DWN)的工况识别方法。首先,改进经验小波分解频谱的分割方法,进而将滚动轴承振动信号自适应分解为本征模态分量;其次,筛选出最能反映轴承运行工况特征的分量并进行信号重构;最后,构造深层Wasserstein网络,将重构后的轴承振动信号输入DWN进行自动特征提取与工况识别。实验结果表明:AEWD结合DWN方法相比于其它深度学习方法在工况识别准确率方面更具优势。 展开更多
关键词 滚动轴承 经验小波分解 深度学习 工况识别
在线阅读 下载PDF
增强经验小波分解和自组织深层网络在轴承工况识别中的研究 被引量:1
2
作者 张康智 毕永强 曹鹏飞 《机械科学与技术》 CSCD 北大核心 2022年第6期905-911,共7页
传统滚动轴承工况识别方法存在轴承振动信号人工特征提取困难的问题,提出一种基于增强经验小波分解(Enhanced empirical wavelet decomposition,EEWD)和自组织深层网络(Self-organizing deep network,SODN)的工况识别方法。首先改进经... 传统滚动轴承工况识别方法存在轴承振动信号人工特征提取困难的问题,提出一种基于增强经验小波分解(Enhanced empirical wavelet decomposition,EEWD)和自组织深层网络(Self-organizing deep network,SODN)的工况识别方法。首先改进经验小波分解的频谱分割方式,将滚动轴承振动信号自适应分解为若干本征模态分量;然后利用综合评价指标筛选出最能反映信号工况特征的本征模态分量并重构信号;最后构造自组织深层网络,将重构后的滚动轴承振动信号输入SODN进行自动特征学习与工况识别。实验结果表明:EEWD结合SODN方法相比于其它深度学习方法在信号特征提取和工况识别准确率方面更具优势。 展开更多
关键词 滚动轴承 增强经验小波分解 深层网络 工况识别
在线阅读 下载PDF
数控车床主轴热误差完全自适应经验模态分解与小波阈值变换分离方法
3
作者 陈庚 丁强强 +2 位作者 苏哲 郭世杰 唐术锋 《航空制造技术》 北大核心 2025年第6期104-114,共11页
数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始... 数控车床主轴热误差是影响车床加工精度的主要因素之一。为提高热误差测量准确度,降低测量技术要求,提出一种基于完全自适应噪声集合经验模态分解(ICEEMDAN)和经验小波变换(EWT)的车床热误差信息分离方法。首先,使用ICEEMDAN算法对原始信号进行分解,将获得的低频模态分量重构后作为EWT算法的输入进行分解,使用离散系数评估EWT算法每次迭代的分解效果。其次,通过对一组仿真信号进行分解,验证该方法的准确性,与ICEEMDAN算法相比,ICEEMDAN-EWT算法的均方根误差(RMSE)降低了5.2%。最后,在CKA6 163A型车床上进行试验,使用五点法辨识热误差,将ICEEMDAN-EWT分离算法与傅里叶变换(FFT)算法进行对比。结果表明,与FFT算法相比,使用ICEEMDAN-EWT算法分离出的5项热变形信号与机床温度的Pearson相关性提高了3.8%,Spearman相关性提高了6.6%,准确度更高。 展开更多
关键词 数控车床 主轴 热误差 完全自适应噪声集合经验模态分解-经验小变换(ICEEMDAN-EWT) 误差分离
在线阅读 下载PDF
EEMD-小波在高边坡变形信息提取中的应用研究 被引量:2
4
作者 梁永平 李盛 赖国泉 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期993-1000,共8页
针对高边坡变形呈现非平稳性及数据“噪声”多源的问题,提出了一种定向滤波的变形信息提取方法。首先,利用集合经验模态分解方法分解变形时序数据,结合定量分析法判别模态分量信号频段;然后,对高频模态分量中的“噪声”利用小波函数进... 针对高边坡变形呈现非平稳性及数据“噪声”多源的问题,提出了一种定向滤波的变形信息提取方法。首先,利用集合经验模态分解方法分解变形时序数据,结合定量分析法判别模态分量信号频段;然后,对高频模态分量中的“噪声”利用小波函数进行“靶向”消噪处理,并对趋势项进行傅里叶级数拟合;最后,重构高边坡变形分析模型,实现真实变形量的提取。结果表明,对比分析各项检验指标,通过“靶向”消噪,各高频模态分量消噪效果明显,重构后的集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)-小波高边坡变形分析模型较原始形变和其他模型在精度指标方面提升显著,该方法可用于高边坡的变形预测分析和真实变形量提取。 展开更多
关键词 公共安全 变形 集合经验模态分解(EEMD)-小波 模态分量 模型重构 精度 信息提取
在线阅读 下载PDF
基于VMD-EWT-LSTM的电力物资质量预测方法
5
作者 戴建卓 陈昱彤 +1 位作者 张思聪 陶加贵 《电气工程学报》 北大核心 2025年第3期208-215,共8页
在电力设备质量管理领域,建立一种智能化的电力设备质量风险防控方法对于推进数字电网建设具有重要意义。针对现有电力设备质量风险防控无法做到智能化、自动化等问题,提出一种电力设备质量评估量化指标。在此基础之上,建立一种基于VMD-... 在电力设备质量管理领域,建立一种智能化的电力设备质量风险防控方法对于推进数字电网建设具有重要意义。针对现有电力设备质量风险防控无法做到智能化、自动化等问题,提出一种电力设备质量评估量化指标。在此基础之上,建立一种基于VMD-EWT-LSTM的电力设备质量预测模型。该模型首先利用变模态分解方法将复杂序列分成若干简单子序列,同时利用经验小波分解算法分解残差序列,对于得到的子序列,采用长短时记忆网络对各种子序列建立预测模型,将预测结果汇总得到最终预测结果。仿真结果表明,所建立的预测模型相较于其他预测模型具有较高的预测精度,RMSE达到0.174,MAE达到0.143,MAPE达到13.360,对于电力设备质量风险防控模型的建立奠定了基础,对推进数字电网建设具有重要意义。 展开更多
关键词 电力设备风险防控 质量评估指标 变模态分解 经验小波分解 序列预测模型
在线阅读 下载PDF
基于EWT-KLD的机械密封金刚石涂层磨损声发射降噪
6
作者 林志斌 高宏力 +1 位作者 吴昱东 谭咏文 《西南交通大学学报》 EI CSCD 北大核心 2024年第1期177-184,共8页
为了准确获得机械密封金刚石涂层在磨损过程的声发射信号,在分析机械密封设备的噪声特性基础上,提出了基于经验小波变换(EWT)和相对熵(KLD)的声发射降噪方法;通过对磨损声发射信号进行经验小波变换得到划分其频带的滤波器组,对磨损声发... 为了准确获得机械密封金刚石涂层在磨损过程的声发射信号,在分析机械密封设备的噪声特性基础上,提出了基于经验小波变换(EWT)和相对熵(KLD)的声发射降噪方法;通过对磨损声发射信号进行经验小波变换得到划分其频带的滤波器组,对磨损声发射信号和背景噪声发射信号用相同的滤波器组划分频带;计算相应频带2种信号的相对熵,用累计和算法在升序排列的相对熵中找到首个大于3σ的值作为阈值,保留相对熵值大于阈值的频带重构信号,完成降噪.研究结果表明:本文所提的EWT-KLD方法可以有效抑制不同工况、不同磨损状态的声发射信号的噪声,有效改善了磨损声发射信号的信噪比,尤其是微弱磨损信号的信噪比,提高了密封端面磨损声发射检测的精度和灵敏度;通过与传统降噪方法的对比发现,本文方法能够对不同工况下的密封磨损声发射信号降噪表现出更强的适应性和稳定性,对于及时检测早期密封磨损和准确监测磨损累积变化过程具有重要意义. 展开更多
关键词 机械密封 声发射降噪 经验小波分解 金刚石涂层
在线阅读 下载PDF
基于PSO-VMD和EWT的异步电机滑动轴承故障诊断 被引量:4
7
作者 彭川 吝伶艳 +3 位作者 雷志鹏 田慕琴 侯茜茜 宋建成 《噪声与振动控制》 CSCD 北大核心 2024年第5期140-147,209,共9页
针对大型电机滑动轴承故障诊断困难的问题,提出基于频域积分、变分模态分解(Variational Mode Decomposition,VMD)和经验小波分解(Empirical Wavelet Transform,EWT)相结合的滑动轴承故障诊断方法。以实际故障电机轴承加速度信号为例,... 针对大型电机滑动轴承故障诊断困难的问题,提出基于频域积分、变分模态分解(Variational Mode Decomposition,VMD)和经验小波分解(Empirical Wavelet Transform,EWT)相结合的滑动轴承故障诊断方法。以实际故障电机轴承加速度信号为例,首先通过频域积分得到位移信号,分析位移信号的时域和频域特征可初步诊断出电机可能存在碰摩故障和不对中故障,但轴心轨迹图混乱,无法给出肯定结论;然后将经粒子群算法(Particle Swarm Optimization,PSO)优化的变分模态分解和小波阈值去噪相结合对原始位移信号进行去噪,通过经验小波变换得到位移信号的主要频率成分并进行重构,重新绘制轴心轨迹,分析表明经提纯得到的轴心轨迹清晰、特征明显,可以由此判断出电机存在碰摩-轴承不对中耦合故障。最后将该方法与聚类经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)等方法对比可以得出,采用该方法可以得到更清晰的轴心轨迹图,有助于实现电机滑动轴承的故障诊断。 展开更多
关键词 故障诊断 滑动轴承 频域积分 变分模态分解(VMD) 经验小波分解(EWT) 轴心轨迹
在线阅读 下载PDF
IEWT和FSK在齿轮与滚动轴承故障诊断中的应用 被引量:5
8
作者 向玲 高雪媛 +1 位作者 张力佳 李媛媛 《振动.测试与诊断》 EI CSCD 北大核心 2017年第6期1256-1261,共6页
改进的经验小波变换方法(improved empirical wavelet transform,简称IEWT)是一种新的自适应性信号处理方法,将这种方法和快速谱峭度(fast spectral kurtosis,简称FSK)相结合,进行齿轮与滚动轴承的故障诊断。首先,采用IEWT对信号进行分... 改进的经验小波变换方法(improved empirical wavelet transform,简称IEWT)是一种新的自适应性信号处理方法,将这种方法和快速谱峭度(fast spectral kurtosis,简称FSK)相结合,进行齿轮与滚动轴承的故障诊断。首先,采用IEWT对信号进行分解,筛选出故障特征最为明显的2个分量并重构信号;其次,对重构信号进行快速谱峭度滤波;最后,对滤波后的信号进行包络谱分析,提取出信号的故障特征。分析齿轮断齿及滚动轴承故障信号,与直接包络谱和基于EMD经验模态分解(empirical mode decomposition,简称EMD)方法的FSK滤波包络谱分析方法相比可知,采用IEWT处理后再进行FSK滤波的信号进行包络谱分析更具有区分性,可有效识别齿轮和滚动轴承的故障特征。 展开更多
关键词 经验小波分解 快速谱峭度滤 包络谱分析 故障诊断
在线阅读 下载PDF
基于ISSEWD和SOWN的轴承工况识别研究 被引量:1
9
作者 戚航 郑迎华 陈锡渠 《机电工程》 CAS 北大核心 2021年第6期740-746,共7页
针对传统滚动轴承运行工况识别方法需要人工特征提取和特征选择的缺陷,提出了一种基于改进谱分割经验小波分解和自组织Wasserstein网络的轴承工况识别方法。首先将采集到的滚动轴承振动信号进行Fourier变换,从而得到了频谱,然后采用四... 针对传统滚动轴承运行工况识别方法需要人工特征提取和特征选择的缺陷,提出了一种基于改进谱分割经验小波分解和自组织Wasserstein网络的轴承工况识别方法。首先将采集到的滚动轴承振动信号进行Fourier变换,从而得到了频谱,然后采用四分位数法检测信号频谱边界,进而对信号频谱进行了自适应分割,将滚动轴承振动信号分解为若干本征模态函数;然后筛选出最能反映轴承运行工况特征的IMFs,并进行了信号重构;最后堆叠多个Wasserstein自编码器,进一步构造了Wasserstein网络,并引入了自组织策略,将重构后的振动信号输入自组织Wasserstein网络,进行了自动特征学习与自动工况识别。研究结果表明:基于ISSEWD-SOWN组合模型的滚动轴承识别方法平均工况识别准确率98.98%,标准差仅0.15,相比于其他组合模型在轴承工况识别准确率方面更具优势,适用于滚动轴承运行工况的自动识别。 展开更多
关键词 滚动轴承 改进谱分割经验小波分解 工况识别 自组织Wasserstein网络 本征模态函数
在线阅读 下载PDF
基于IEWT-FE-BO-LSTM模型的超短期风功率预测 被引量:10
10
作者 陆秋贤 马刚 涂孟夫 《水电能源科学》 北大核心 2023年第1期217-220,共4页
为提高超短期风功率预测精度,提出一种基于IEWT-FE-BO-LSTM的组合风功率预测模型,首先利用改进经验小波分解(IEWT)对历史风功率数据进行分解;然后引入模糊熵(FE)算法对各分解子模态进行复杂度计算重组子模态;再对各个重组分量分别建立... 为提高超短期风功率预测精度,提出一种基于IEWT-FE-BO-LSTM的组合风功率预测模型,首先利用改进经验小波分解(IEWT)对历史风功率数据进行分解;然后引入模糊熵(FE)算法对各分解子模态进行复杂度计算重组子模态;再对各个重组分量分别建立基于长短时神经网络(LSTM)的预测模型,利用贝叶斯优化算法(BO)进行超参数组合,解决人为调参导致训练结果不佳的问题;最后通过历史风电场数据进行算例分析。结果表明,IEWT-FE-BO-LSTM模型对超短期风功率有较高的预测精度和预测效率。 展开更多
关键词 超短期风功率预测 改进经验小波分解 模糊熵 贝叶斯优化算法
在线阅读 下载PDF
基于EWT-PSO-Elman耦合模型在径流预测中的应用 被引量:7
11
作者 莫崇勋 邓云 +3 位作者 阮俞理 雷兴碧 麻荣永 孙桂凯 《科学技术与工程》 北大核心 2022年第22期9775-9780,共6页
由于径流序列的非线性和非平稳性,单一预测模型能力有限,难以做出准确预测。因此,基于澄碧河流域坝首站1979—2019年共41 a的实测月径流序列,引入经验小波变换分解(EWT)、粒子群算法(PSO),建立一种基于Elman神经网络的组合月径流预测模... 由于径流序列的非线性和非平稳性,单一预测模型能力有限,难以做出准确预测。因此,基于澄碧河流域坝首站1979—2019年共41 a的实测月径流序列,引入经验小波变换分解(EWT)、粒子群算法(PSO),建立一种基于Elman神经网络的组合月径流预测模型(EWT-PSO-Elman),并采用纳什效率系数(NSE)、平均相对误差绝对值(MAPE)和均方根误差(RMSE)对测试集的预测结果进行评价与分析,并将预测结果与EWT-PSO-BP、PSO-Elman、PSO-BP、Elman、BP模型进行比较。结果表明:EWT-PSO-Elman模型的纳什效率系数为0.913 5,均方根误差为19.451 1,预报等级为甲级,具有较好的预测精度和泛化能力;EWT-PSO-Elman模型的预测精度优于EWT-PSO-BP、PSO-Elman、PSO-BP、Elman、BP模型。可见,EWT-PSO-Elman模型具有更好的预测精度,可应用于径流预测研究中。 展开更多
关键词 经验小变换分解(EWT) 粒子群算法(PSO) ELMAN神经网络 径流预测 澄碧河流域
在线阅读 下载PDF
MBCV-EWT和奇异值差分谱的滚动轴承信号降噪方法 被引量:2
12
作者 王亚萍 崔巍 +2 位作者 葛江华 许迪 李云飞 《振动.测试与诊断》 EI CSCD 北大核心 2019年第4期822-831,908,共11页
针对滚动轴承振动信号降噪时,克服模式混叠、保证各频率成分完整性和独立性问题,提出最大类间方差-经验小波变换分解(maximum between-cluster variance-empirical wavelet transform,简称MBCV-EWT)与奇异值差分谱相结合的信号降噪方法... 针对滚动轴承振动信号降噪时,克服模式混叠、保证各频率成分完整性和独立性问题,提出最大类间方差-经验小波变换分解(maximum between-cluster variance-empirical wavelet transform,简称MBCV-EWT)与奇异值差分谱相结合的信号降噪方法。首先,针对传统区间划分的不确定性问题,提出MBCV-EWT信号分解方法,通过最大类间方差对信号频谱自适应划分,并在每个划分区间上构建带通滤波器;其次,针对分解分量冗余,提出脉冲指标作为调幅-调频分量筛选准则,选取最优的分量用于降噪;最后,对最优调幅-调频分量进行奇异值分解,根据其差分谱重构分量并实现降噪。仿真及实验结果表明,该方法能够实现频谱自适应划分,有效克服模式混叠等问题,保证分解得到的各成分主频独立且完整,调幅-调频分量筛选准确,降噪效果明显,为故障识别和预测奠定研究基础。 展开更多
关键词 信号降噪 最大类间方差-经验小变换分解 奇异值差分谱 滚动轴承
在线阅读 下载PDF
基于HHT的高坝泄流结构工作模态参数辨识 被引量:6
13
作者 张建伟 朱良欢 +2 位作者 江琦 赵瑜 郭佳 《振动.测试与诊断》 EI CSCD 北大核心 2015年第4期777-783,804,共7页
基于高坝的工作特点,提出一种适用于泄流结构的工作模态参数时域辨识方法。对于低信噪比泄流结构振动信号,首先,利用小波阈值-经验模态分解(empirical mode decomposition,简称EMD)联合滤波方法滤除低频水流脉动噪声和高频白噪声,得到... 基于高坝的工作特点,提出一种适用于泄流结构的工作模态参数时域辨识方法。对于低信噪比泄流结构振动信号,首先,利用小波阈值-经验模态分解(empirical mode decomposition,简称EMD)联合滤波方法滤除低频水流脉动噪声和高频白噪声,得到结构振动有效信息;然后,通过希尔伯特-黄变换(Hilbert-Huang transform,简称HHT)原理辨识结构系统的固有频率及阻尼比;最后,结合奇异熵增量理论对系统模态进行定阶和模态验证。仿真研究表明,该方法能够有效避免模态分解中的频率混杂,具有较强的鲁棒性以及较高的辨识精度。将该方法应用于三峡重力坝5号溢流坝段,可准确辨识出结构系统的工作模态参数,为研究高坝泄流结构安全运行与在线无损动态检测提供基础。 展开更多
关键词 泄流激励 工作模态 参数辨识 小波阈值-经验模态分解联合滤 希尔伯特-黄变换
在线阅读 下载PDF
考虑不同库水耦合模式的拱坝振动特性分析 被引量:4
14
作者 张建伟 曹克磊 +3 位作者 赵瑜 江琦 刘晓亮 暴振磊 《振动.测试与诊断》 EI CSCD 北大核心 2016年第6期1183-1189,共7页
为探讨不同库水模型对拱坝结构动力特性的影响,结合拉西瓦工程实例,分别建立附加质量模型与流固耦合(fluid solid interaction,简称FSI)系统耦合模型进行动力特性分析,并将仿真结果与依据小波阈值-经验模态分解联合滤波的随机子空间(... 为探讨不同库水模型对拱坝结构动力特性的影响,结合拉西瓦工程实例,分别建立附加质量模型与流固耦合(fluid solid interaction,简称FSI)系统耦合模型进行动力特性分析,并将仿真结果与依据小波阈值-经验模态分解联合滤波的随机子空间(stochastic subspace identification,简称SSI)法辨识结果进行对比。结果表明:两种模型均可反映结构的振动特性,附加质量模型计算结果与辨识结果的频率误差为0.41%~7.55%;FSI系统耦合模型计算结果误差为0.09%~3.19%,且同阶次频率误差均比附加质量模型小,相邻阶次的频率间隔相对稳定,弥补了附加质量模型的模态缺失现象。FSI系统耦合模型在模拟阶数和精度方面都优于附加质量模型,能更全面、准确地反映坝体振动信息,可在拱坝结构动力特性分析中推广应用,亦可作为后续拱坝结构损伤诊断研究的基准有限元模型。 展开更多
关键词 拱坝 附加质量模型 流固耦合系统模型 小波阈值及经验模态分解联合滤 随机子空间模态辨识
在线阅读 下载PDF
基于多种径流预测耦合模型的流域月径流预测优选研究 被引量:1
15
作者 莫崇勋 邓云 +3 位作者 阮俞理 雷兴碧 麻荣永 孙桂凯 《广西大学学报(自然科学版)》 CAS 北大核心 2022年第4期914-923,共10页
为了提高径流预测的准确性,以澄碧河流域坝首站1979-2019年共41 a的实测月径流序列为例,在优选Elman神经网络模型、支持向量机模型、BP单一预测模型的基础上,分别耦合经验模态分解(EMD)、集合经验模态分解(EEMD)和经验小波变换分解(EWT)... 为了提高径流预测的准确性,以澄碧河流域坝首站1979-2019年共41 a的实测月径流序列为例,在优选Elman神经网络模型、支持向量机模型、BP单一预测模型的基础上,分别耦合经验模态分解(EMD)、集合经验模态分解(EEMD)和经验小波变换分解(EWT),选取纳什效率系数(NSE)、平均相对误差绝对值(MAPE)和均方根误差(RMSE)对测试集的预测结果进行评价与分析。结果表明:相对于Elman神经网络模型和SVM模型,BP模型的预测效果较好;耦合预测模型预测精度都优于单一模型。耦合模型中,EWT-BP的纳什效率系数为0.91,预报等级为甲级,预测精度优于EMD-BP和EEMD-BP。采用数据预处理技术生成平稳序列,可有效减少原序列存在非线性和不稳定性特征的影响,并有利于提高流域水文模型的径流预测能力。 展开更多
关键词 BP神经网络模型 ELMAN神经网络 支持向量机 经验小变换分解 径流预测 澄碧河流域
在线阅读 下载PDF
基于CCWEEMDAN和包络谱熵的轴承故障诊断研究 被引量:3
16
作者 林严 林建辉 +1 位作者 何刘 熊仕勇 《机械设计与制造》 北大核心 2019年第7期127-130,134,共5页
完全互补小波噪声辅助集总经验模态分解(CCWEEMDAN)是经验模态分解(EMD)的改进算法,是一种噪声辅助的自适应非线性非平稳数据处理方法。噪声辅助能克服EMD方法处理间歇信号出现的“模态混叠”问题。而相比较互补集总经验模态分解(CEEMD)... 完全互补小波噪声辅助集总经验模态分解(CCWEEMDAN)是经验模态分解(EMD)的改进算法,是一种噪声辅助的自适应非线性非平稳数据处理方法。噪声辅助能克服EMD方法处理间歇信号出现的“模态混叠”问题。而相比较互补集总经验模态分解(CEEMD),完全互补小波噪声辅助集总经验模态分解能实现更优的性能。在轴承故障诊断的应用中,这里的方法利用小波分解高频段噪声细节成分,添加到原始轴承故障信号中,提取出本征模态信号。利用包络谱熵判断轴承故障导致的冲击响应特征所在本征模态信号,通过对轴承外圈、内圈局部故障状态下的特征提取进行故障诊断,结果表明该方法能有效提取故障冲击响应特征。 展开更多
关键词 完全互补小波噪声辅助集总经验模态分解 模态混叠 包络谱熵 轴承 故障诊断
在线阅读 下载PDF
Vibration-based feature extraction of determining dynamic characteristic for engine block low vibration design 被引量:2
17
作者 杜宪峰 李志军 +3 位作者 毕凤荣 张俊红 王霞 邵康 《Journal of Central South University》 SCIE EI CAS 2012年第8期2238-2246,共9页
In order to maintain vibration performances within the limits of the design, a vibration-based feature extraction method for dynamic characteristic using empirical mode decomposition (EMD) and wavelet analysis was p... In order to maintain vibration performances within the limits of the design, a vibration-based feature extraction method for dynamic characteristic using empirical mode decomposition (EMD) and wavelet analysis was proposed. The proposed method was verified experimentally and numerically by implementing the scheme on engine block. In the implementation process, the following steps were identified to be important: 1) EMD technique in order to solve the feature extraction of vibration signals; 2) Vibration measurement for the purpose of confirming the structural weak regions of engine block in experiment; 3) Finite element modeling for the purpose of determining dynamic characteristic in time region and frequency region to affirm the comparability of response character corresponding to improvement schemes; 4) Adopting a feature index oflMF for structural improvement based on EMD and wavelet analysis. The obtained results show that IMF of signal is more sensitive to response character corresponding to improvement schemes. Finally, examination of the results confirms that the proposed vibration-based feature extraction method is very robust, and focuses on the relative merits of modification and full-scale structural optimization of engine, together with the creation of new low-vibration designs. 展开更多
关键词 feature extraction dynamic characteristic finite element model empirical mode decomposition diesel engine block
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部