Action potentials generated in the sinoatrial node (SAN) dominate the rhythm and rate of a healthy human heart. Subsequently, these action potentials propagate to the whole heart via its conduction system. Abnormali...Action potentials generated in the sinoatrial node (SAN) dominate the rhythm and rate of a healthy human heart. Subsequently, these action potentials propagate to the whole heart via its conduction system. Abnormalities of impulse generation and/or propagation in a heart can cause arrhythmias. For example, SAN dysfunction or conduction block of the atrioventricular node can lead to serious bradycardia which is currently treated with an implanted electronic pacemaker. On the other hand, conduction damage may cause reentrant tachyarrhythmias which are primarily treated pharmacologically or by medical device-based therapies, including defibrillation and tissue ablation. However, drug therapies sometimes may not be effective or are associated with serious side effects. Device-based therapies for cardiac arrhythmias, even with well developed technology, still face inadequacies, limitations, hardware complications, and other challenges. Therefore, scientists are actively seeking other alternatives for antiarrhythmic therapy. In particular, cells and genes used for repairing cardiac conduction damage/defect have been investigated in various studies both in vitro and in vivo. Despite the complexities of the excitation and conduction systems of the heart, cell and gene-based strategies provide novel alternatives for treatment or cure of cardiac arrhythmias. This review summarizes some highlights of recent research progress in this field.展开更多
Objective To characterize early afterdepolarizations (EADs) caused triggered activity (TA) among calsequestrin-2 (CASQ2) knock-in (CASQ2 KI) mice and its relationship with aging. Methods Electrophysiological p...Objective To characterize early afterdepolarizations (EADs) caused triggered activity (TA) among calsequestrin-2 (CASQ2) knock-in (CASQ2 KI) mice and its relationship with aging. Methods Electrophysiological properties of ventricular myocytes from 3- month (mo, young), 9-mo (adult-l) and 12-too (adult-2) in wild-type (WT) and CASQ2 KI mice were investigated with patch-clamp technique. Results The incidences of EADs and TA in CASQ2 KI cardiomyocytes increased with increasing age. In contrast, WT mice cardiomyocytes showed no significant change in matched-age groups. Compared with that in 3-mo CASQ2 KI mice, the 50% repolarization of action potential (APD50) showed prolongation in both 9-mo and 12-mo ones (9.2±0.9 ms of 9-mo and 10.3 ± 1.2 ms of 12- mo vs. 5.6± 0.3 ms of 3-mo), while the 90 % repolarization of action potential (APD90) was similar among 3 age groups. Compared with 3-mo mice, the 9-mo and 12-mo CASQ2 KI mice showed markedly reduced transient outward potassium current (Ito) densities but increased L-type calcium current (ICa-L) densities. Conlcusion This study suggested that events of EADs and TA in CASQ2 KI mice increased with increasing age, It might be associated partly with the augment of cellular calcium concentration and the prolongation of APD50 induced by decrease of Ito and increase of ICa-L in adult CASQ2 KI mice展开更多
Objective Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be an- ti-arrhythmic. The purpose of our study is to investigate the effects of ALL on t...Objective Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be an- ti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (Ito) and slow delayed rectifier potassium current (IKs). Methods The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record/to and IKs in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. Results The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of/to and IKs in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation ofIto in M layers and partly inhibit the channel openings of/to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of IKs channel in Epi and Endo layers without affecting its activation. Conclusions Our study gives partially explanation about the mechanisms of tmnsmural inhibition of/to and IKs channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.展开更多
文摘Action potentials generated in the sinoatrial node (SAN) dominate the rhythm and rate of a healthy human heart. Subsequently, these action potentials propagate to the whole heart via its conduction system. Abnormalities of impulse generation and/or propagation in a heart can cause arrhythmias. For example, SAN dysfunction or conduction block of the atrioventricular node can lead to serious bradycardia which is currently treated with an implanted electronic pacemaker. On the other hand, conduction damage may cause reentrant tachyarrhythmias which are primarily treated pharmacologically or by medical device-based therapies, including defibrillation and tissue ablation. However, drug therapies sometimes may not be effective or are associated with serious side effects. Device-based therapies for cardiac arrhythmias, even with well developed technology, still face inadequacies, limitations, hardware complications, and other challenges. Therefore, scientists are actively seeking other alternatives for antiarrhythmic therapy. In particular, cells and genes used for repairing cardiac conduction damage/defect have been investigated in various studies both in vitro and in vivo. Despite the complexities of the excitation and conduction systems of the heart, cell and gene-based strategies provide novel alternatives for treatment or cure of cardiac arrhythmias. This review summarizes some highlights of recent research progress in this field.
文摘Objective To characterize early afterdepolarizations (EADs) caused triggered activity (TA) among calsequestrin-2 (CASQ2) knock-in (CASQ2 KI) mice and its relationship with aging. Methods Electrophysiological properties of ventricular myocytes from 3- month (mo, young), 9-mo (adult-l) and 12-too (adult-2) in wild-type (WT) and CASQ2 KI mice were investigated with patch-clamp technique. Results The incidences of EADs and TA in CASQ2 KI cardiomyocytes increased with increasing age. In contrast, WT mice cardiomyocytes showed no significant change in matched-age groups. Compared with that in 3-mo CASQ2 KI mice, the 50% repolarization of action potential (APD50) showed prolongation in both 9-mo and 12-mo ones (9.2±0.9 ms of 9-mo and 10.3 ± 1.2 ms of 12- mo vs. 5.6± 0.3 ms of 3-mo), while the 90 % repolarization of action potential (APD90) was similar among 3 age groups. Compared with 3-mo mice, the 9-mo and 12-mo CASQ2 KI mice showed markedly reduced transient outward potassium current (Ito) densities but increased L-type calcium current (ICa-L) densities. Conlcusion This study suggested that events of EADs and TA in CASQ2 KI mice increased with increasing age, It might be associated partly with the augment of cellular calcium concentration and the prolongation of APD50 induced by decrease of Ito and increase of ICa-L in adult CASQ2 KI mice
文摘Objective Allocryptopine (ALL) is an effective alkaloid of Corydalis decumbens (Thunb.) Pers. Papaveraceae and has proved to be an- ti-arrhythmic. The purpose of our study is to investigate the effects of ALL on transmural repolarizing ionic ingredients of outward potassium current (Ito) and slow delayed rectifier potassium current (IKs). Methods The monophasic action potential (MAP) technique was used to record the MAP duration of the epicardium (Epi), myocardium (M) and endocardium (Endo) of the rabbit heart and the whole cell patch clamp was used to record/to and IKs in cardiomyocytes of Epi, M and Endo layers that were isolated from rabbit ventricles. Results The effects of ALL on MAP of Epi, M and Endo layers were disequilibrium. ALL could effectively reduce the transmural dispersion of repolarization (TDR) in rabbit transmural ventricular wall. ALL decreased the current densities of/to and IKs in a voltage and concentration dependent way and narrowed the repolarizing differences among three layers. The analysis of gating kinetics showed ALL accelerated the channel activation ofIto in M layers and partly inhibit the channel openings of/to in Epi, M and Endo cells. On the other hand, ALL mainly slowed channel deactivation of IKs channel in Epi and Endo layers without affecting its activation. Conclusions Our study gives partially explanation about the mechanisms of tmnsmural inhibition of/to and IKs channels by ALL in rabbit myocardium. These findings provide novel perspective regarding the anti-arrhythmogenesis application of ALL in clinical settings.