期刊文献+
共找到2,627篇文章
< 1 2 132 >
每页显示 20 50 100
基于改进金豺算法优化最小二乘法支持向量机的磨削表面粗糙度预测
1
作者 朱文博 张淑权 +1 位作者 张梦梦 迟玉伦 《表面技术》 北大核心 2025年第16期165-181,共17页
目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔... 目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔逊相关分析和主成分分析(PCA)对信号特征进行筛选,降低特征之间的多重共线性,降低模型复杂度;为改善磨削表面粗糙度预测模型的性能,对于金豺算法(GJO)易陷入局部最优问题,在GJO基础上引入佳点集初始化种群、非线性能量因子更新策略以及融合鲸鱼优化算法改进搜索策略,提升算法的初始种群多样性、收敛精度和全局搜索能力;为提高磨削表面粗糙度预测模型有效性,利用IGJO对LSSVM进行参数寻优,建立磨削表面粗糙度预测模型。结果通过轴承套圈内滚道磨削加工实验数据进行验证,结果表明IGJO-LSSVM磨削表面粗糙度预测模型能有效预测粗糙度值,预测精度为95.223%,RMSE值为0.0133,MAPE值为4.776%,R2值为0.956,均优于GJO-LSSVM、LSSVM和BP神经网络模型。结论通过IGJO优化后的LSSVM模型可实现磨削表面粗糙度有效预测,同时能够避免传统LSSVM容易陷入局部极小值的问题,对提高产品磨削质量具有重要意义。 展开更多
关键词 磨削表面粗糙度 轴承套圈 最小二乘支持向量 金豺算法
在线阅读 下载PDF
基于马氏距离的密度加权最小二乘孪生支持向量机
2
作者 吕莉 贺智鹏 +3 位作者 张法滢 张莹莹 康平 李院民 《江西师范大学学报(自然科学版)》 北大核心 2025年第1期37-48,共12页
最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支... 最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支持向量机.该算法利用马氏距离替换欧氏距离构造密度加权策略,充分考虑点与分布的关系,给予噪声数据较低的权重,降低算法对噪声的敏感性;同时结合马氏距离核函数计算样本内协方差矩阵,消除样本特征值之间方差的差异,更准确地体现样本间的相关性,从而优化决策超平面.实验采用人工数据集和UCI数据集,实验结果表明:该算法比同类型分类算法具有更高的分类精确度和泛化能力,能够有效区分在样本中的噪声数据并赋予合适的权重值,提升分类器的鲁棒性. 展开更多
关键词 支持向量 马氏距离 核函数 密度加权 最小二乘损失函数
在线阅读 下载PDF
基于最小二乘支持向量机和车辆荷载监测数据的悬索桥吊索疲劳寿命预测 被引量:1
3
作者 曾国良 邓扬 《桥梁建设》 北大核心 2025年第1期41-48,共8页
针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数... 针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数据的相关性模型,建模过程中考虑LSSVM模型输入与输出的最优模式以及训练数据长度;建立1根吊索(以29号吊索为例)与其它吊索的日疲劳损伤之间的相关性模型,预测其它吊索的疲劳损伤;考虑日车流量和等效车总重的增长,进行吊索疲劳寿命预测。结果表明:对于29号吊索的4种LSSVM模型,模型Ⅳ的边界条件较其它3种模型更为合理,测试数据的平均相对误差低于模型Ⅰ~Ⅲ;该方法将日疲劳损伤与车辆荷载监测数据进行直接关联;LSSVM相关性模型的预测能力依赖于训练样本的数量,当训练数据长度为284 d时,模型Ⅳ的预测能力较强,其平均相对误差低于5.5%;同时考虑日车流量和等效车总重增长时,疲劳累积损伤显著增长。 展开更多
关键词 悬索桥 吊索 结构健康监测 车辆荷载 疲劳损伤 疲劳寿命 最小乘支持向量 相关性模型
在线阅读 下载PDF
基于最小二乘支持向量机解耦的无轴承磁通切换电机转子径向磁悬浮逆系统控制
4
作者 林佳泷 周扬忠 +1 位作者 陈东远 梁彤伟 《电工技术学报》 北大核心 2025年第14期4534-4546,共13页
针对无轴承磁通切换电机非线性、多变量、强耦合特性,该文提出一种转子径向磁悬浮解耦控制策略。首先,采用最小二乘支持向量机的方法对悬浮力模型中的耦合电磁力部分进行拟合补偿,实现悬浮系统初步解耦;然后,验证悬浮系统可逆性,并按照... 针对无轴承磁通切换电机非线性、多变量、强耦合特性,该文提出一种转子径向磁悬浮解耦控制策略。首先,采用最小二乘支持向量机的方法对悬浮力模型中的耦合电磁力部分进行拟合补偿,实现悬浮系统初步解耦;然后,验证悬浮系统可逆性,并按照逆系统理论设计伪线性复合悬浮系统,进一步实现了悬浮系统的线性化解耦;最后,对解耦后的悬浮系统设计闭环控制器,对悬浮闭环系统稳定性进行理论分析。实验结果验证,所提控制策略实现了无轴承磁通切换电机悬浮系统的动态解耦,提升了悬浮系统的动、静态性能。 展开更多
关键词 无轴承磁通切换电 逆系统 最小乘支持向量 径向磁悬浮 解耦控制
在线阅读 下载PDF
基于半监督学习结合最小二乘支持向量机的蝴蝶兰生长期最佳环境模型构建
5
作者 陈俞帆 白芮羽 +3 位作者 陈邦云 王华 敬勇 李亚硕 《农业工程》 2025年第4期38-42,共5页
蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型... 蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型用于预测蝴蝶兰生长最佳环境条件。通过自学习方法,模型能够从大量未标记样本中筛选出置信度高的样本,增加训练样本数量,提高模型的泛化能力和预测准确性。试验结果表明,当概率阈值设置为97%时,模型准确性最高,均方根误差3.974、决定系数0.975。该模型可为蝴蝶兰的科学栽培提供新的解决方案。 展开更多
关键词 半监督学习 最小乘支持向量 环境模型 蝴蝶兰 智慧农业
在线阅读 下载PDF
基于改进最小二乘支持向量机组合模型的深基坑沉降变形预测 被引量:7
6
作者 刘清龙 吕颖慧 +1 位作者 秦磊 赵鹏 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第1期8-14,共7页
为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量... 为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量机进行参数寻优,对分解的数据分别训练、预测后再叠加,得到最终预测结果;应用所提出模型对济南市某深基坑的累积沉降量进行预测,同时与其他模型对比,验证所提出模型的实用性和优越性。结果表明:所提出模型预测深基坑累积沉降量的平均相对误差为0.035%,均方误差为0.0809 mm^(2),均方根误差为0.2838 mm,所提出模型的准确性远优于其他模型的;自适应噪声完备集合经验模态分解方法的引入更有利于在深基坑沉降变形预测方面发挥最小二乘支持向量机的优势。 展开更多
关键词 深基坑沉降变形 最小乘支持向量 经验模态分解 粒子群优化算法 遗传算法
在线阅读 下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:6
7
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小乘支持向量 软测量模型
在线阅读 下载PDF
基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型 被引量:2
8
作者 田水承 任治鹏 毛俊睿 《矿业安全与环保》 CAS 北大核心 2024年第4期110-116,共7页
为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后... 为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后,采用主成分分析法对选取的特征指标进行降维处理,建立表征矿工疲劳程度的特征集;在此基础上,利用遗传算法优化最小二乘支持向量机的关键参数,构建矿工疲劳程度识别模型。结果表明:选取的矿工疲劳程度特征指标能够有效反映矿工的疲劳程度;相较GA-SVM和LSSVM模型,融合GA-LSSVM模型可显著提高矿工疲劳程度的识别准确率(平均识别准确率为96.87%)。构建的矿工疲劳程度识别模型可较为高效地识别矿工的疲劳程度,对煤矿人因事故的防控具有一定的现实指导意义。 展开更多
关键词 矿工 疲劳识别 心电信号 最小乘支持向量 遗传算法
在线阅读 下载PDF
基于聚类经验模态分解和最小二乘支持向量机的短期风速组合预测 被引量:90
9
作者 王贺 胡志坚 +3 位作者 张翌晖 李晨 杨楠 王战胜 《电工技术学报》 EI CSCD 北大核心 2014年第4期237-245,共9页
从分析风速序列的非线性和非平稳性特征出发,将一种基于聚类经验模态分解(EEMD)和最小二乘支持向量机(LSSVM)的组合预测模型引入到风速预测中。首先使用聚类经验模态分解将风速序列分解为一组相对平稳的子序列,以减轻不同趋势信息间的... 从分析风速序列的非线性和非平稳性特征出发,将一种基于聚类经验模态分解(EEMD)和最小二乘支持向量机(LSSVM)的组合预测模型引入到风速预测中。首先使用聚类经验模态分解将风速序列分解为一组相对平稳的子序列,以减轻不同趋势信息间的相互影响;然后运用最小二乘支持向量机对各子序列分别建模预测,为降低预测风险,使用自适应扰动粒子群算法(ADPSO)和模型学习效果反馈机制对LSSVM预测模型的输入维数和超参数进行联合优化;最后将各个子序列的预测结果叠加得到预测风速。实例研究表明,本文所提的组合预测模型可以有效挖掘风速序列特性,具有较高的预测精度。 展开更多
关键词 风速 预测 聚类经验模态分解 最小乘支持向量 自适应扰动粒子群算法学习效果反馈
在线阅读 下载PDF
基于模糊信息粒化和最小二乘支持向量机的风电功率波动范围组合预测模型 被引量:29
10
作者 王贺 胡志坚 仉梦林 《电工技术学报》 EI CSCD 北大核心 2014年第12期218-224,共7页
提出一种基于模糊信息粒化和最小二乘支持向量机的风电功率波动范围组合预测建模方法。该方法首先对训练样本进行模糊信息粒化,根据需要提取各窗口的有效分量信息,即各窗口的最小值、大致平均值和最大值;其次应用最小二乘支持向量机对... 提出一种基于模糊信息粒化和最小二乘支持向量机的风电功率波动范围组合预测建模方法。该方法首先对训练样本进行模糊信息粒化,根据需要提取各窗口的有效分量信息,即各窗口的最小值、大致平均值和最大值;其次应用最小二乘支持向量机对各分量分别建立预测模型,并使用自适应粒子群算法对各分量模型进行优化;最后使用优化后最小二乘支持向量机模型对风电功率波动范围进行预测。实例研究表明,该组合预测模型可以有效跟踪风电功率变化,对风电功率波动范围进行预测。 展开更多
关键词 风力发电 波动范围 模糊信息粒化 最小乘支持向量 组合预测
在线阅读 下载PDF
贝叶斯框架下最小二乘支持向量机的中长期电力负荷组合预测 被引量:12
11
作者 牛东晓 吕海涛 张云云 《华北电力大学学报(自然科学版)》 CAS 北大核心 2008年第6期62-66,共5页
影响中长期负荷变化的因素较多,单一预测模型很难满足预测需要,组合预测能够较好地解决单一模型的缺点,借鉴单一预测模型的优点。提出贝叶斯框架下最小二乘支持向量机(LS-SVM)中长期负荷组合预测模型,利用结构化风险原则代替经验风险最... 影响中长期负荷变化的因素较多,单一预测模型很难满足预测需要,组合预测能够较好地解决单一模型的缺点,借鉴单一预测模型的优点。提出贝叶斯框架下最小二乘支持向量机(LS-SVM)中长期负荷组合预测模型,利用结构化风险原则代替经验风险最小化,挖掘各单一预测模型的信息,以单一模型的预测数作为组合预测输入样本,通过贝叶斯后验理论确定最小二乘支持向量机参数,建立组合预测模型进行预测。通过算例表明,提出的模型具有较高的预测精度,能够较好地解决小样本下的预测问题,具有良好的泛化能力和预测精度。 展开更多
关键词 中长期负荷 组合预测 贝叶斯框架 最小乘支持向量
在线阅读 下载PDF
基于粒子群优化和最小二乘支持向量机的储罐腐蚀速率预测 被引量:2
12
作者 王明慧 党鹏飞 +1 位作者 杨铮鑫 龚博 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期71-76,共6页
利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。... 利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。结果表明:使用PSOLSSVM获得的腐蚀速率预测结果与实际腐蚀速率较为吻合,罐顶、第一层罐壁、罐底预测结果的平均绝对百分误差分别为2.265%、3.077%、1.18%,均方根误差分别为0.010%、0.012%、0.011%,决定系数分别为0.973、0.982、0.976。该方法可以对储罐内腐蚀速率进行有效的预测。 展开更多
关键词 粒子群优化(PSO) 最小乘支持向量(LSSVM) 腐蚀速率预测
在线阅读 下载PDF
基于最小二乘支持向量机的区域GPS高程转换组合 被引量:17
13
作者 王继刚 胡永辉 孔令杰 《大地测量与地球动力学》 CSCD 北大核心 2009年第5期99-102,共4页
常用GPS高程转换方法有多项式、BP神经网络和多面函数拟合法等,他们各有特点和适用范围。为了充分利用各单一方法的优点,提出运用最小二乘支持向量机(LSSVM)组合单一方法的转换方法。LSSVM是一种基于结构化风险最小原理的非线性模型,能... 常用GPS高程转换方法有多项式、BP神经网络和多面函数拟合法等,他们各有特点和适用范围。为了充分利用各单一方法的优点,提出运用最小二乘支持向量机(LSSVM)组合单一方法的转换方法。LSSVM是一种基于结构化风险最小原理的非线性模型,能较好地解决小样本和局部极小值问题,同时具有参数少、易于求解等特点。以单一方法获得的高程异常和平面坐标作为LSSVM的输入,输出的是组合后的高程异常,在训练样本中以高程异常的已知值为期望输出。实验结果证实LSSVM组合法能提高GPS高程转换精度。 展开更多
关键词 GPS高程转换 最小乘支持向量 组合模型 似大地水准面 拟合
在线阅读 下载PDF
以最小二乘支持向量机作组合器的变压器油中溶解气体体积分数预测 被引量:8
14
作者 肖燕彩 陈秀海 朱衡君 《电力自动化设备》 EI CSCD 北大核心 2008年第7期33-36,共4页
提出将灰色多变量模型和自回归AR模型的预测结果作为最小二乘支持向量机的输入变量,将实际值作为其输出向量,训练最小二乘支持向量机以获得组合器的权重,并将训练后的组合模型用于变压器油中溶解气体体积分数的预测。最小二乘支持向量... 提出将灰色多变量模型和自回归AR模型的预测结果作为最小二乘支持向量机的输入变量,将实际值作为其输出向量,训练最小二乘支持向量机以获得组合器的权重,并将训练后的组合模型用于变压器油中溶解气体体积分数的预测。最小二乘支持向量机选用径向基核,其中的参数采用交叉实验的方法获得。这种复合模型综合了多种信息,充分利用了最小二乘支持向量机解决有限样本问题的优势。实例分析证明了所给方法的有效性和相比其他方法的优越性。 展开更多
关键词 灰色多变量模型 自回归模型 最小乘支持向量 油中溶解气体
在线阅读 下载PDF
组合最小二乘支持向量机与粒子群优化算法研究黄土湿陷性 被引量:4
15
作者 井彦林 仵彦卿 +1 位作者 杨丽娜 侯晓涛 《西安理工大学学报》 CAS 2006年第1期15-19,共5页
通过静力触探试验指标结合扰动黄土试样的液限、塑限及含水量等指标用最小二乘支持向量机方法进行建模,提出了静力触探试验指标和湿陷系数的非线性关系模型,并引入粒子群优化算法进行模型反演分析,确定最优参数。通过6个对比勘探点的50... 通过静力触探试验指标结合扰动黄土试样的液限、塑限及含水量等指标用最小二乘支持向量机方法进行建模,提出了静力触探试验指标和湿陷系数的非线性关系模型,并引入粒子群优化算法进行模型反演分析,确定最优参数。通过6个对比勘探点的50组试样实例应用分析,显示了最小二乘支持向量机是一种较为有效的非线性建模方法,粒子群优化算法进行模型参数优化能够保证全局最优。验证结果表明模型的精度较高,有一定的实用价值。 展开更多
关键词 静力触探 最小乘支持向量 粒子群算法 湿陷性
在线阅读 下载PDF
基于最小二乘支持向量机的农村土地利用空间优化配置方法及实例分析 被引量:3
16
作者 黄晓磊 冯长委 《现代农业科技》 2024年第8期185-188,共4页
因为农村各类用地数据具有样本小、非线性等特点,导致土地利用空间配置结果的适宜性较差,所以本文提出基于最小二乘支持向量机的农村土地利用空间优化配置方法。基于最小二乘支持向量机预测农村土地利用空间格局,得到各类用地面积数据,... 因为农村各类用地数据具有样本小、非线性等特点,导致土地利用空间配置结果的适宜性较差,所以本文提出基于最小二乘支持向量机的农村土地利用空间优化配置方法。基于最小二乘支持向量机预测农村土地利用空间格局,得到各类用地面积数据,对各类用地进行满足经济效益与生态效益最大化的多目标函数的优化配置。实例结果表明,农村土地利用空间优化配置结果中各用地类型高度适宜区域的面积占比均超过75%,证实了设计方法的合理性。 展开更多
关键词 最小乘支持向量 农村土地 土地利用 空间优化配置
在线阅读 下载PDF
一种稳健最小二乘支持向量机GNSS-IR土壤湿度反演方法
17
作者 王式太 蒋威 +2 位作者 杨可心 马岳 姜新伟 《遥感信息》 CSCD 北大核心 2024年第2期43-51,共9页
全球卫星导航系统干涉测量(global navigation satellite system interferometric reflectometry,GNSS-IR)是一种新型的遥感技术,可利用多径信噪比序列的延迟相位值反演土壤湿度值,其延迟相位求解通常使用信赖域算法,该算法一定程度依... 全球卫星导航系统干涉测量(global navigation satellite system interferometric reflectometry,GNSS-IR)是一种新型的遥感技术,可利用多径信噪比序列的延迟相位值反演土壤湿度值,其延迟相位求解通常使用信赖域算法,该算法一定程度依赖初值设定。文章先使用遗传算法求解出延迟相位粗略值,再将该数值作为信赖域的初值用于迭代计算,提升了部分卫星延迟相位的求解精度及稳定性。此外,针对多径信噪比序列易受环境因素影响引入粗差,进而影响模型反演精度,文章采用稳健最小二乘支持向量机作为反演模型,同时又考虑到多星融合的时空尺度优势,将该模型分别做了单星反演至五星融合反演,并与最小二乘支持向量机模型做对比。分析结果表明,当三星融合时该模型提升精度最为明显,MAE最高可降低15.6%,RMSE最高可降低12.0%。 展开更多
关键词 GNSS-IR 土壤湿度 遗传算法 多卫星融合 稳健最小乘支持向量
在线阅读 下载PDF
基于灰色模型和最小二乘支持向量机的电力短期负荷组合预测 被引量:58
18
作者 唐杰明 刘俊勇 +1 位作者 杨可 刘友波 《电网技术》 EI CSCD 北大核心 2009年第3期63-68,共6页
提出一种联合灰色模型(grey model,GM)和最小二乘支持向量机回归(least square support vector regression,LSSVR)算法的电力短期负荷智能组合预测方法。在考虑负荷日周期性的基础上,通过对历史负荷数据的不同取舍,构建出各种不同的历... 提出一种联合灰色模型(grey model,GM)和最小二乘支持向量机回归(least square support vector regression,LSSVR)算法的电力短期负荷智能组合预测方法。在考虑负荷日周期性的基础上,通过对历史负荷数据的不同取舍,构建出各种不同的历史负荷数据序列,并对每个历史数据序列分别建立能修正β参数的GM(1,1)灰色模型进行负荷预测;采用最小二乘支持向量机回归算法对不同灰色模型的预测结果进行非线性组合,以获取最终预测值。该方法在充分利用灰色模型所需原始数据少、建模简单、运算方便等优势的基础上,结合最小二乘支持向量机所具有的泛化能力强、非线性拟合性好、小样本等特性,提高了预测精度。仿真结果验证了所提出组合方法的有效性和实用性。 展开更多
关键词 电力系统 灰色模型 最小乘支持向量 非线性组合 短期负荷预测
在线阅读 下载PDF
基于优化组合核最小二乘支持向量机的脉动风速预测 被引量:4
19
作者 徐言沁 李春祥 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第4期627-633,共7页
将B(包括B1,B3和B5)样条核函数和径向基(radial basic function,RBF)核函数进行线性组合,构造B-RBF组合核函数,进而提出基于粒子群优化B-RBF核的最小二乘支持向量机(least squares support vector machine,LSSVM).在脉动风速预测中,运... 将B(包括B1,B3和B5)样条核函数和径向基(radial basic function,RBF)核函数进行线性组合,构造B-RBF组合核函数,进而提出基于粒子群优化B-RBF核的最小二乘支持向量机(least squares support vector machine,LSSVM).在脉动风速预测中,运用粒子群优化(particle swarm optimization,PSO)算法对B-RBF-LSSVM模型的惩罚参数和核函数参数进行智能优化.同时给出PSO-RBF-LSSVM的数值预测结果进行比较.数值分析表明,PSO-B3-RBF-LSSVM比PSO-B1-RBF-LSSVM,PSO-B5-RBF-LSSVM和PSORBF-LSSVM具有更高的预测性能. 展开更多
关键词 B样条核函数 组合核函数 最小乘支持向量 粒子群优化 脉动风速
在线阅读 下载PDF
基于最小二乘支持向量机的组合模型在区域似大地水准面拟合中的应用 被引量:8
20
作者 李明飞 吴军超 张一驰 《大地测量与地球动力学》 CSCD 北大核心 2022年第9期971-974,共4页
针对最小二乘支持向量机(least squares support vector machine,LSSVM)在区域似大地水准面拟合过程中存在较大模型误差的问题,构建LSSVM-Shepard GPS高程异常转换组合模型。采用LSSVM拟合高程异常中的中长波项,利用Shepard插值模型来... 针对最小二乘支持向量机(least squares support vector machine,LSSVM)在区域似大地水准面拟合过程中存在较大模型误差的问题,构建LSSVM-Shepard GPS高程异常转换组合模型。采用LSSVM拟合高程异常中的中长波项,利用Shepard插值模型来泛化去除中长波项的残余项。结合平原地区和高原山区工程实例,分别采用二次曲面模型、LSSVM、Shepard插值模型、二次曲面-Shepard模型、LSSVM-Shepard模型进行高程转换及精度对比。结果表明,新组合模型高程转换精度高于各单一模型,且在平原地区转换效果与二次曲面-Shepard模型基本一致,在高原山区拟合效果优于二次曲面-Shepard模型。 展开更多
关键词 最小乘支持向量 Shepard插值模型 似大地水准面 高程转换
在线阅读 下载PDF
上一页 1 2 132 下一页 到第
使用帮助 返回顶部