目的:比较决策树和Logistic回归模型对体外受精-胚胎移植(in vitro fertilization and embryo transfer,IVF-ET)患者妊娠结局的预测价值。方法:纳入2021年1月至2022年10月在长治医学院附属和平医院接受IVF-ET的患者350例为研究对象,根...目的:比较决策树和Logistic回归模型对体外受精-胚胎移植(in vitro fertilization and embryo transfer,IVF-ET)患者妊娠结局的预测价值。方法:纳入2021年1月至2022年10月在长治医学院附属和平医院接受IVF-ET的患者350例为研究对象,根据妊娠结局分为妊娠成功组(215例)和妊娠失败组(135例)。收集患者临床资料,建立IVF-ET患者妊娠结局Logistic回归和决策树预测模型,并在是否基于Logistic回归结果条件下建立决策树分析模型(决策树1和决策树2),采用受试者工作特征(receiver operating characteristic,ROC)曲线对模型预测效果进行评价。结果:350例患者中,妊娠成功患者占61.43%,妊娠失败者占38.57%。妊娠失败组年龄≥35岁、不孕年限≥5年、周期次数≥1次、有心理精神障碍的患者比例及HCG日血清孕酮水平均高于妊娠成功组,获卵数≥10枚、受精率≥75%的患者比例及HCG日子宫内膜厚度、优质胚胎数小于妊娠成功组(P<0.05)。多因素Logistic回归分析结果显示,年龄、HCG日血清孕酮水平、优质胚胎数及心理精神障碍均是IVF-ET患者妊娠结局的影响因素(P<0.05)。决策树模型显示,年龄、HCG日血清孕酮水平、优质胚胎数为IVF-ET患者妊娠结局的影响因素。Logistic回归模型曲线下面积(area under curve,AUC)为0.832,预测敏感度、特异度和准确度分别为87.3%、71.4%、83.5%;决策树1的AUC为0.859,预测敏感度、特异度和准确度分别为85.1%、76.8%、85.6%;决策树2的AUC为0.820,预测敏感度、特异度和准确度分别为83.7%、73.2%、82.4%。决策树1的AUC大于决策树2(P<0.05),但与Logistic回归模型的AUC比较差异无统计学意义(P>0.05)。结论:Logistic回归模型和决策树模型对于IVF-ET患者妊娠结局均有一定的预测价值。展开更多
局部线性嵌入算法采用欧氏距离选择邻域点,这通常会损失数据集本身的非线性特征,造成邻域点选取错误,且仅使用欧氏距离构造权重会导致信息挖掘不充分。针对以上问题,提出基于概率模型与信息熵的局部线性嵌入算法(Probability informatio...局部线性嵌入算法采用欧氏距离选择邻域点,这通常会损失数据集本身的非线性特征,造成邻域点选取错误,且仅使用欧氏距离构造权重会导致信息挖掘不充分。针对以上问题,提出基于概率模型与信息熵的局部线性嵌入算法(Probability information entropy-LLE,PIE-LLE)。首先,为了使邻域点选择更加合理,从数据集的概率分布角度出发,考虑样本点及其邻域的概率分布,为样本点构造符合局部分布的邻域集合。其次,为了充分提取样本的局部结构信息,在权重构造阶段,分别计算样本所属邻域概率以及每个样本的信息熵,融合二者信息重构低维样本。最后,在两个轴承故障数据集上的实验表明,所提方法故障识别准确度最高达到了100%,高于其他对比算法;在邻域点个数5~15范围内,PIE-LLE算法展现出良好的低维可视化效果;在参数敏感性实验中,该算法可以保持Fisher指标较大,有效提高了算法的分类准确度和稳定性。展开更多
文摘目的:比较决策树和Logistic回归模型对体外受精-胚胎移植(in vitro fertilization and embryo transfer,IVF-ET)患者妊娠结局的预测价值。方法:纳入2021年1月至2022年10月在长治医学院附属和平医院接受IVF-ET的患者350例为研究对象,根据妊娠结局分为妊娠成功组(215例)和妊娠失败组(135例)。收集患者临床资料,建立IVF-ET患者妊娠结局Logistic回归和决策树预测模型,并在是否基于Logistic回归结果条件下建立决策树分析模型(决策树1和决策树2),采用受试者工作特征(receiver operating characteristic,ROC)曲线对模型预测效果进行评价。结果:350例患者中,妊娠成功患者占61.43%,妊娠失败者占38.57%。妊娠失败组年龄≥35岁、不孕年限≥5年、周期次数≥1次、有心理精神障碍的患者比例及HCG日血清孕酮水平均高于妊娠成功组,获卵数≥10枚、受精率≥75%的患者比例及HCG日子宫内膜厚度、优质胚胎数小于妊娠成功组(P<0.05)。多因素Logistic回归分析结果显示,年龄、HCG日血清孕酮水平、优质胚胎数及心理精神障碍均是IVF-ET患者妊娠结局的影响因素(P<0.05)。决策树模型显示,年龄、HCG日血清孕酮水平、优质胚胎数为IVF-ET患者妊娠结局的影响因素。Logistic回归模型曲线下面积(area under curve,AUC)为0.832,预测敏感度、特异度和准确度分别为87.3%、71.4%、83.5%;决策树1的AUC为0.859,预测敏感度、特异度和准确度分别为85.1%、76.8%、85.6%;决策树2的AUC为0.820,预测敏感度、特异度和准确度分别为83.7%、73.2%、82.4%。决策树1的AUC大于决策树2(P<0.05),但与Logistic回归模型的AUC比较差异无统计学意义(P>0.05)。结论:Logistic回归模型和决策树模型对于IVF-ET患者妊娠结局均有一定的预测价值。
文摘局部线性嵌入算法采用欧氏距离选择邻域点,这通常会损失数据集本身的非线性特征,造成邻域点选取错误,且仅使用欧氏距离构造权重会导致信息挖掘不充分。针对以上问题,提出基于概率模型与信息熵的局部线性嵌入算法(Probability information entropy-LLE,PIE-LLE)。首先,为了使邻域点选择更加合理,从数据集的概率分布角度出发,考虑样本点及其邻域的概率分布,为样本点构造符合局部分布的邻域集合。其次,为了充分提取样本的局部结构信息,在权重构造阶段,分别计算样本所属邻域概率以及每个样本的信息熵,融合二者信息重构低维样本。最后,在两个轴承故障数据集上的实验表明,所提方法故障识别准确度最高达到了100%,高于其他对比算法;在邻域点个数5~15范围内,PIE-LLE算法展现出良好的低维可视化效果;在参数敏感性实验中,该算法可以保持Fisher指标较大,有效提高了算法的分类准确度和稳定性。