The periodic boundary value problems for nonlinear functional differential equa- tions was discussed.The existence of maximal and minimal solutions was obtained when the lower and upper solutions satisfied the formal ...The periodic boundary value problems for nonlinear functional differential equa- tions was discussed.The existence of maximal and minimal solutions was obtained when the lower and upper solutions satisfied the formal or reverse order.展开更多
In this paper we discuss the quasilinear parabolic equation U_■=▽(u^u(1-u)~β.Vu)+■(x,t.u)▽u+C(x,t,u) which is degenerate at u =0 and u=1.Let u(x,t)be a weak solution of the equation satisfying 0<u(x,t)<1.Un...In this paper we discuss the quasilinear parabolic equation U_■=▽(u^u(1-u)~β.Vu)+■(x,t.u)▽u+C(x,t,u) which is degenerate at u =0 and u=1.Let u(x,t)be a weak solution of the equation satisfying 0<u(x,t)<1.Under some assumptions we establish H■lder continuity of u(x,t).展开更多
基金Supported by the Education Department Foundation of Shandong Province(J07WH01)
文摘The periodic boundary value problems for nonlinear functional differential equa- tions was discussed.The existence of maximal and minimal solutions was obtained when the lower and upper solutions satisfied the formal or reverse order.
文摘In this paper we discuss the quasilinear parabolic equation U_■=▽(u^u(1-u)~β.Vu)+■(x,t.u)▽u+C(x,t,u) which is degenerate at u =0 and u=1.Let u(x,t)be a weak solution of the equation satisfying 0<u(x,t)<1.Under some assumptions we establish H■lder continuity of u(x,t).