期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于累积式自回归动平均传递函数模型的短期负荷预测 被引量:19
1
作者 李妮 江岳春 +1 位作者 黄珊 毛李帆 《电网技术》 EI CSCD 北大核心 2009年第8期93-97,103,共6页
针对短期负荷预测,提出了累积式自回归动平均(auto-regressive integrated moving average,ARIMA)传递函数模型的简化建模方法。传递函数模型考虑了干扰因素对因变量的作用,体现了干扰因素中变量间相互影响的关系。其构造灵活,可用较少... 针对短期负荷预测,提出了累积式自回归动平均(auto-regressive integrated moving average,ARIMA)传递函数模型的简化建模方法。传递函数模型考虑了干扰因素对因变量的作用,体现了干扰因素中变量间相互影响的关系。其构造灵活,可用较少的参数建立阶数较高的模型;并且假定值较少,容易得到满足。该文还将温度因素考虑在内,通过算例将传递函数模型和ARIMA模型的预测结果与实际值进行了比较,结果表明采用传递函数改进后的ARIMA模型预测精度提高,预测误差减小,具有较强的实用性。 展开更多
关键词 负荷预测 时间序列 累积自回归平均模型 传递函数模型
在线阅读 下载PDF
基于累积式自回归动平均法和反向传播神经网络的短期负荷预测模型 被引量:17
2
作者 陈伟 吴耀武 +1 位作者 娄素华 熊信艮 《电网技术》 EI CSCD 北大核心 2007年第3期73-76,共4页
针对电力系统短期负荷的特点建立了将累积式自回归动平均法(autoregressive integrated moving average,ARIMA)和采用反向传播算法(back propagation,BP)的神经网络法相结合的短期负荷预测模型。该模型利用ARIMA方法对线性时间序列逼近... 针对电力系统短期负荷的特点建立了将累积式自回归动平均法(autoregressive integrated moving average,ARIMA)和采用反向传播算法(back propagation,BP)的神经网络法相结合的短期负荷预测模型。该模型利用ARIMA方法对线性时间序列逼近能力强的特点首先对预测日负荷进行预测,然后应用BP神经网络方法对预测结果进行修正,因此克服了单一算法存在的不足。应用该模型对某地区电网进行负荷预测,结果表明该方法的预测效果较好。 展开更多
关键词 短期负荷预测 累积自回归平均洼(ARIMA) BP神经网络 平滑性处理
在线阅读 下载PDF
基于非参数GARCH的时间序列模型在日前电价预测中的应用 被引量:17
3
作者 邓佳佳 黄元生 宋高峰 《电网技术》 EI CSCD 北大核心 2012年第4期190-196,共7页
电力市场中电价序列具有较强的波动性、周期性和随机性,以致经常出现价格尖峰,这在很大程度上影响了电价预测的精度。提出了一种基于小波变换和非参数GARCH(generalized auto regressive conditional heteroskedasticity)模型的时间序... 电力市场中电价序列具有较强的波动性、周期性和随机性,以致经常出现价格尖峰,这在很大程度上影响了电价预测的精度。提出了一种基于小波变换和非参数GARCH(generalized auto regressive conditional heteroskedasticity)模型的时间序列模型对日前电价进行预测。利用小波变换将历史电价序列分解重构概貌序列和细节序列,分别建立累积式自回归滑动平均(auto-regressive integrated moving average,ARIMA)模型进行预测,采用非参数GARCH模型对电价序列预测残差的随机波动率进行建模,从而提高对价格波动性的预测能力和ARIMA模型的预测精度。将该模型应用于美国宾夕法尼亚—新泽西—马里兰(Pennsylvania-New Jersey-Maryland,PJM)电力市场的日前电价预测。算例结果表明,非参数GARCH模型可以更好地拟合电价序列剧烈波动的特性,该模型能够提高电价的预测精度。 展开更多
关键词 电价预测 小波变换 累积自回归滑动平均模型 非参数GARCH模型
在线阅读 下载PDF
计及温度影响的短期负荷预测时间序列模型 被引量:6
4
作者 万志宏 陈亮 文福拴 《华北电力大学学报(自然科学版)》 CAS 北大核心 2011年第3期61-66,共6页
时间序列模型在国际和国内的短期电力负荷预测中得到了广泛应用。然而,这种方法的一个主要缺点是无法将影响负荷预测的主要因素之一即气象因素考虑进去。在此背景下,首先基于负荷和气温数据建立了负荷预测的回归模型,然后构造了回归模... 时间序列模型在国际和国内的短期电力负荷预测中得到了广泛应用。然而,这种方法的一个主要缺点是无法将影响负荷预测的主要因素之一即气象因素考虑进去。在此背景下,首先基于负荷和气温数据建立了负荷预测的回归模型,然后构造了回归模型残差累积式自回归—滑动平均模型并对回归模型进行修正。最后,用广东电力系统的实际负荷数据说明了所发展的短期负荷预测模型的实际预测效果。计算结果表明所提出的方法可以弥补现有时间序列模型的缺点,有效地提高负荷预测精度。 展开更多
关键词 短期负荷预测 回归模型 时间序列模型 累积自回归—滑动平均模型
在线阅读 下载PDF
一种新的基于DFNN的时间序列预测
5
作者 王容 邓辉文 《科学技术与工程》 2010年第32期8055-8060,共6页
对时间序列预测,利用自回归移动平均模型(ARIMA)给出了一种新的基于动态模糊神经网络(DFNN)的模型。该模型中主要是考虑了输出误差这个重要因素。将ARIMA模型产生的非线性特征用DFNN模型模拟,能够产生比DFNN和ARIMA单个模型更加精确的... 对时间序列预测,利用自回归移动平均模型(ARIMA)给出了一种新的基于动态模糊神经网络(DFNN)的模型。该模型中主要是考虑了输出误差这个重要因素。将ARIMA模型产生的非线性特征用DFNN模型模拟,能够产生比DFNN和ARIMA单个模型更加精确的模型。因此,它可以作为一个适当的替代模型来预测任务,特别是当需要更高的预测精度的时候。最后用Mackey-Glass时间序列验证了模型的有效性。 展开更多
关键词 动态模糊神经网络 累积式自回归移动平均 Mackey-Glass时间序列预测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部