期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
时变工况下基于精细复合多尺度散度熵的旋转机械故障诊断方法 被引量:3
1
作者 卢太武 马洪波 +1 位作者 王先芝 陈改革 《振动与冲击》 EI CSCD 北大核心 2023年第21期211-218,共8页
时变工况下旋转机械的振动信号具有明显的时变调制的特点,熵值方法在提取该类信号特征时具有独特的优势。为了克服传统的熵值方法计算速度慢、熵值不稳定等问题,提出了一种基于精细复合多尺度散度熵的时变工况下旋转机械故障诊断方法,... 时变工况下旋转机械的振动信号具有明显的时变调制的特点,熵值方法在提取该类信号特征时具有独特的优势。为了克服传统的熵值方法计算速度慢、熵值不稳定等问题,提出了一种基于精细复合多尺度散度熵的时变工况下旋转机械故障诊断方法,能够更有效地提取故障特征信息并提高故障诊断准确率。首先,采用重采样的方法将时域信号转为角域信号,并利用变分模态分解和独立分量分析相结合的方法对角域信号进行去噪。其次,采用精细复合多尺度散度熵对去噪后的角域信号进行特征提取,然后将提取到的特征输入LR(logistic regression)分类器中识别故障类型。最后,通过时变工况下的齿轮试验对所提方法进行验证,结果表明,所提出的方法有效提高了时变工况下故障诊断准确率。 展开更多
关键词 故障诊断 时变工况 精细复合多尺度散度熵 变分模态分解 独立分量分析
在线阅读 下载PDF
基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的风电机组变桨轴承退化状态评估 被引量:2
2
作者 王晓龙 李英晟 +1 位作者 付锐棋 何玉灵 《动力工程学报》 CAS CSCD 北大核心 2024年第5期782-791,共10页
针对风电机组变桨轴承服役过程环境噪声干扰严重、退化状态评估精度低的问题,提出一种基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的退化状态评估模型。该模型将监测数据状态特征获取过程由单通道拓展为多通道进行,通过提... 针对风电机组变桨轴承服役过程环境噪声干扰严重、退化状态评估精度低的问题,提出一种基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的退化状态评估模型。该模型将监测数据状态特征获取过程由单通道拓展为多通道进行,通过提出的多元精细复合多尺度波动散布熵算法来获取多通道监测数据的多尺度状态特征,并将累积和检验算法与欧氏距离矩阵测度方法相结合,用于定量衡量基准样本与待分析样本间的差异,从而实现变桨轴承退化状态评估。风电机组变桨轴承全寿命周期加速疲劳实验验证结果表明:该模型能够及时捕捉到变桨轴承的初始退化时刻并且准确跟踪整个退化过程。 展开更多
关键词 风电机组 变桨轴承 退化状态评估 多元精细复合多尺度波动 累积欧氏距离矩阵测
在线阅读 下载PDF
基于精细复合多尺度散布熵的抗蛇行减振器故障诊断 被引量:2
3
作者 岑潮宇 代亮成 +3 位作者 池茂儒 赵明花 郭兆团 曾鹏程 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第10期4334-4343,共10页
抗蛇行减振器作为高速列车关键悬挂元件在减轻列车横向振动提高安全性和稳定性上有重要作用,为实现对抗蛇行减振器故障进行精确诊断,针对非线性振动信号故障特征不明显的问题,提出一种自适应噪声完备集合经验模态分解(Complete ensemble... 抗蛇行减振器作为高速列车关键悬挂元件在减轻列车横向振动提高安全性和稳定性上有重要作用,为实现对抗蛇行减振器故障进行精确诊断,针对非线性振动信号故障特征不明显的问题,提出一种自适应噪声完备集合经验模态分解(Complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与精细复合多尺度散布熵结合的故障诊断方法。首先采用CEEMDAN分解信号得到本征模态函数(Intrinsic mode function,IMF),计算精细复合多尺度散布熵组成特征集,然后融合多个通道振动信号特征并用核主成分分析法进行降维,将降维后的特征集分成训练集和测试集,最后输入到改进麻雀算法优化的支持向量机模型中进行训练与诊断。为验证方法的可行性,以机车滚动振动试验台模拟列车运行的不同速度,设置抗蛇行减振器故障工况,通过转向架和车体多个位置传感器获得试验数据进行分析。研究结果表明,经过优选的特征集能更好地捕捉抗蛇行减振器故障的特征信息,与未经优选的特征集相比故障诊断结果正确率有所提升;多通道融合特征的方法与单通道相比反映故障信息更加全面,补偿了单一通道诊断结果精确度低的不足,进一步提高了故障诊断结果正确率;改进麻雀算法优化了模型参数,解决了参数设计的盲目性,提高了模型分类识别能力,并与其他算法相比验证了优越性。运用该方法对抗蛇行减振器进行故障诊断,能够有效诊断出抗蛇行减振器故障类型,为抗蛇行减振器故障诊断提供了一种新的方法。 展开更多
关键词 抗蛇行减振器 故障诊断 改进麻雀算法 精细复合多尺度 支持向量机
在线阅读 下载PDF
精细复合多尺度波动散布熵在液压泵故障诊断中的应用 被引量:26
4
作者 姜万录 赵亚鹏 +1 位作者 张淑清 李满 《振动与冲击》 EI CSCD 北大核心 2022年第8期7-16,共10页
液压泵振动信号具有非线性、非平稳性的特点,熵算法在该类信号分析方面有着独到的优势,但传统的熵算法在液压泵振动信号特征提取中有计算速度慢、熵值不准确、不稳定等不足,为了更有效地提取故障特征信息并提高故障诊断准确性,将精细复... 液压泵振动信号具有非线性、非平稳性的特点,熵算法在该类信号分析方面有着独到的优势,但传统的熵算法在液压泵振动信号特征提取中有计算速度慢、熵值不准确、不稳定等不足,为了更有效地提取故障特征信息并提高故障诊断准确性,将精细复合多尺度波动散布熵(refined composite multiscale fluctuation dispersion entropy,RCMFDE)引入到液压泵的故障特征提取中,提出了一种基于RCMFDE和粒子群优化支持向量机结合的液压泵故障诊断方法。计算不同故障振动信号的RCMFDE,并选取合适尺度下的多个RCMFDE值作为特征向量形成特征样本,输入粒子群优化支持向量机中进行故障分类识别。通过仿真信号和液压泵故障实测信号进行分析,并将所提出的方法与基于多尺度样本熵(multiscale sample entropy,MSE)、多尺度排列熵(multiscale permutation entropy,MPE)、多尺度符号动态熵(multiscale symbolic dynamic entropy,MSDE)、多尺度散布熵(multiscale dispersion entropy,MDE)、精细复合多尺度散布熵(refined composite multiscale dispersion entropy,RCMDE)、多尺度波动散布熵(multiscale fluctuation dispersion entropy,MFDE)的故障特征提取方法进行对比。试验结果表明,该方法能够更加准确地识别多类液压泵故障并能对液压泵性能退化程度进行有效评估。 展开更多
关键词 波动 精细复合多尺度波动(RCMFDE) 粒子群优化支持向量机 故障诊断 液压泵
在线阅读 下载PDF
基于精细复合多尺度熵与支持向量机的睡眠分期 被引量:10
5
作者 叶仙 胡洁 +3 位作者 田畔 戚进 车大钿 丁颖 《上海交通大学学报》 EI CAS CSCD 北大核心 2019年第3期321-326,共6页
提出将脑电信号与眼动信号的精细复合多尺度熵作为睡眠分期依据,利用多层次支持向量机的机器学习算法对睡眠进行自动分期.利用精细复合多尺度熵对睡眠信号进行特征提取,选用脑电以及眼电通道的信号,以保证输入特性的可靠性,并通过3层支... 提出将脑电信号与眼动信号的精细复合多尺度熵作为睡眠分期依据,利用多层次支持向量机的机器学习算法对睡眠进行自动分期.利用精细复合多尺度熵对睡眠信号进行特征提取,选用脑电以及眼电通道的信号,以保证输入特性的可靠性,并通过3层支持向量机实现了睡眠的自动分期.结果表明,分类器的输入参数可由熵值曲线的变化特征来确定.基于精细复合多尺度熵的多层次支持向量机算法的睡眠分期准确率达到85.3%,与已有的分类算法相比,所提出的算法更加均衡,且整体分类效果更佳. 展开更多
关键词 睡眠分期 精细 复合多尺度
在线阅读 下载PDF
基于精细复合多尺度熵和自编码的滚动轴承故障诊断方法 被引量:12
6
作者 郑近德 潘海洋 +3 位作者 包家汉 刘庆运 丁克勤 欧淑彬 《噪声与振动控制》 CSCD 2019年第2期175-180,193,共7页
多尺度熵是一种有效衡量机械振动信号复杂度的非线性动力学方法。针对其存在的不足,引入精细复合多尺度熵(Refined composite multiscale entropy, RCMSE),在此基础上,结合自编码降维和遗传优化支持向量机,提出一种滚动轴承故障智能诊... 多尺度熵是一种有效衡量机械振动信号复杂度的非线性动力学方法。针对其存在的不足,引入精细复合多尺度熵(Refined composite multiscale entropy, RCMSE),在此基础上,结合自编码降维和遗传优化支持向量机,提出一种滚动轴承故障智能诊断新方法。首先,利用RCMSE提取滚动轴承振动信号多尺度复杂度特征,构建初始特征向量矩阵;其次,采用自编码对初始高维特征数据降维,得到低维流形特征;然后,将低维特征向量输入到基于遗传优化支持向量机的多故障模式分类器中进行训练、识别与诊断。最后,将所提方法应用于实验数据分析,并与多尺度熵方法进行对比,结果表明,该方法不仅能够有效诊断滚动轴承的工作状态和故障类型,而且识别率高于所对比方法。 展开更多
关键词 故障诊断 多尺度 精细复合多尺度 特征降维 滚动轴承
在线阅读 下载PDF
基于精细复合多尺度熵特征向量相关系数在滚动轴承故障诊断中应用 被引量:11
7
作者 叶金义 谢小平 +1 位作者 梁烊炀 张福运 《噪声与振动控制》 CSCD 2018年第5期186-191,共6页
复合多尺度熵(CMSE)是在多尺度熵(MSE)基础上提出来的,它改善了MSE存在的熵值不精确、波动较大等,但不能解决样本时间序列太短引起未定义熵问题。精细复合多尺度熵(Refined Composite Multi-scale Entropy,RCMSE)通过改进算法使熵估计... 复合多尺度熵(CMSE)是在多尺度熵(MSE)基础上提出来的,它改善了MSE存在的熵值不精确、波动较大等,但不能解决样本时间序列太短引起未定义熵问题。精细复合多尺度熵(Refined Composite Multi-scale Entropy,RCMSE)通过改进算法使熵估计的准确性得到提高,并能降低诱导未定义熵的概率。以此为基础,提出基于RCMSE特征向量关系数的轴承故障识别分类方法。该方法首先利用RCMSE对数据样本生成多尺度熵,计算测试样本与已知故障状态的训练样本的RCMSE相关系数,从而判断测试样本的状态类型。对轴承信号数据进行试验表明,该方法能100%准确的对轴承正常,内圈,外圈和滚动体故障信号识别分类。因此,该方法是一种有效的识别故障特征,可为实际轴承故障诊断提供参考。 展开更多
关键词 振动与波 精细复合多尺度 故障诊断 相关系数 特征提取
在线阅读 下载PDF
基于CEEMDAN-精细复合多尺度熵和Stacking集成学习的短期风电功率预测 被引量:6
8
作者 康文豪 徐天奇 +2 位作者 王阳光 邓小亮 李琰 《水利水电技术(中英文)》 北大核心 2022年第2期163-172,共10页
为了解决风电功率的间歇性与非平稳性带来的功率预测难度,提出了一种基于CEEMDAN-精细复合多尺度熵和Stacking集成学习的短期风电功率预测方法。在对风电功率进行预测之前,对风电功率数据进行预处理。首先引入自适应噪声完备集合经验模... 为了解决风电功率的间歇性与非平稳性带来的功率预测难度,提出了一种基于CEEMDAN-精细复合多尺度熵和Stacking集成学习的短期风电功率预测方法。在对风电功率进行预测之前,对风电功率数据进行预处理。首先引入自适应噪声完备集合经验模态分解(CEEMDAN)方法分解风电功率原始序列,并计算各分解分量的精细复合多尺度熵(RCMSE)。然后,将熵值相近的分量序列重组成新序列,以降低模型复杂度和提高计算效率。在预测阶段,对重组之后的序列分别建立Stacking集成学习模型进行风电功率短期预测,最后对预测结果进行重组。通过新疆某风电场实测数据证明:结合各单一预测模型优点的Stacking集成学习模型方法与其4种基学习器KNN、RF、SVR和ANN相比,Stacking模型具有更高的风电预测准确度。在同等条件下,CEEMDAN-RCMSE-Stacking模型均方根误差相比单一的Stacking模型及EMD-RCMSE-Stacking模型分别减少了20.34%和9.74%,平均绝对误差分别减少了24.55%和6.35%,而拟合优度系数分别提高了4.09%和1.62%,即CEEMDAN-RCMSE-Stacking模型拥有更高的预测性能。 展开更多
关键词 短期风电功率预测 CEEMDAN 精细复合多尺度 Stacking集成学习 影响因素 新能源 清洁可再生能源
在线阅读 下载PDF
基于小波包多尺度模糊熵和加权KL散度的煤岩智能识别 被引量:4
9
作者 李一鸣 《工矿自动化》 CSCD 北大核心 2023年第4期92-98,共7页
垮落煤岩智能识别是智能放煤的前提,通过垮落煤岩实时精准识别可避免人工放煤造成的顶煤“欠放”或“过放”问题。现有煤岩识别方法大多通过数据降维处理获得垮落煤岩特征向量,通过构建识别模型进行煤岩识别,但数据降维、模型建立和训... 垮落煤岩智能识别是智能放煤的前提,通过垮落煤岩实时精准识别可避免人工放煤造成的顶煤“欠放”或“过放”问题。现有煤岩识别方法大多通过数据降维处理获得垮落煤岩特征向量,通过构建识别模型进行煤岩识别,但数据降维、模型建立和训练均需较长时间,一定程度上影响了连续综放开采效率。针对该问题,提出了一种基于小波包多尺度模糊熵和加权KL散度的煤岩智能识别方法。对不同工况(顶煤垮落、岩石垮落、大块顶煤垮落)下垮落煤岩冲击液压支架后尾梁的振动信号进行小波包分解,得到一系列频带;对各频带的序列进行粗粒化,计算各频带多个尺度粗粒化向量的模糊熵,即小波包多尺度模糊熵,将其作为特征向量;以小波包分解后各频带能量与振动信号总能量的比值作为加权KL散度的权重,比较待测未知样本与不同工况下样本特征向量的加权KL散度,实现垮落煤岩的实时精准识别。实验结果表明:基于小波包多尺度模糊熵和加权KL散度的方法可有效识别垮落煤岩类别,而基于多尺度模糊熵和KL散度的方法、基于小波包模糊熵和KL散度的方法识别效果不佳;将小波包多尺度模糊熵作为特征向量时,BP神经网络识别准确率达95%,进一步验证了小波包多尺度模糊熵可作为表征垮落煤岩的特征向量;整个煤岩识别过程耗时为1.063 9 s,基本满足垮落煤岩智能识别实时性需求,大大降低了对连续综放开采效率的影响,综合性能优于同类煤岩识别方法。 展开更多
关键词 智能放煤 煤岩智能识别 小波包分解 多尺度模糊 加权KL
在线阅读 下载PDF
最大相关峭度解卷积的改进及在往复压缩机气阀故障诊断中的应用
10
作者 王金东 李云峰 +1 位作者 赵海洋 李彦阳 《石油化工设备技术》 CAS 2021年第6期35-40,52,I0003,I0004,共9页
针对往复压缩机气阀振动信号受强烈气体波动干扰的特性,提出了一种基于改进最大相关峭度解卷积和精细复合多尺度模糊熵的往复压缩机气阀故障诊断方法。使用改进最大相关峭度解卷积对往复压缩机气阀振动信号进行解卷积处理,可有效地提取... 针对往复压缩机气阀振动信号受强烈气体波动干扰的特性,提出了一种基于改进最大相关峭度解卷积和精细复合多尺度模糊熵的往复压缩机气阀故障诊断方法。使用改进最大相关峭度解卷积对往复压缩机气阀振动信号进行解卷积处理,可有效地提取信号中的冲击成分;对处理后的信号进行精细复合多尺度模糊熵量化分析,获得往复压缩机气阀故障诊断的特征向量,将其输入到支持向量机对故障特征进行识别。往复压缩机气阀故障实验数据分析表明:该方法能够有效地提取出往复压缩机气阀的故障信息,实现往复压缩机气阀故障的精确诊断。 展开更多
关键词 最大相关峭解卷积 往复压缩机 精细复合多尺度模糊 气阀 故障诊断
在线阅读 下载PDF
基于VMD-RCMFE的船用柴油机故障特征提取方法
11
作者 王家兴 向阳 陈天佑 《噪声与振动控制》 CSCD 北大核心 2024年第6期172-178,254,共8页
柴油机作为船舶的核心动力来源,一旦发生故障将严重影响船舶安全,为保证船舶及船员安全,需要对船舶柴油机进行故障诊断研究。本文以WP6型船用6缸柴油机为研究对象,对失火、进气滤器堵塞、进气门间隙过大及排气门间隙过大多种故障进行研... 柴油机作为船舶的核心动力来源,一旦发生故障将严重影响船舶安全,为保证船舶及船员安全,需要对船舶柴油机进行故障诊断研究。本文以WP6型船用6缸柴油机为研究对象,对失火、进气滤器堵塞、进气门间隙过大及排气门间隙过大多种故障进行研究。针对船舶柴油机缸盖振动信号的非线性和非平稳特性,提出一种基于变分模态分解(Variational Mode Decomposition,VMD)、精细化复合多尺度模糊熵(Refined Composite Multiscale Fuzzy Entropy,RCMFE)、支持向量机(Support Vector Machines,SVM)的柴油机故障诊断方法。该方法首先利用VMD方法对缸盖振动信号进行降噪处理,然后利用RCMFE方法提取柴油机缸盖振动信号中隐含的故障特征,最后采用SVM模型进行诊断,诊断精度高达99.2%。 展开更多
关键词 故障诊断 船舶柴油机 缸盖振动 变分模态分解 精细复合多尺度模糊
在线阅读 下载PDF
基于变分模态分解的癫痫脑电信号分类方法 被引量:15
12
作者 张学军 景鹏 +1 位作者 何涛 孙知信 《电子学报》 EI CAS CSCD 北大核心 2020年第12期2469-2475,共7页
癫痫是一种常见的脑部疾病,通过脑电图能非侵入地定位人脑中的致痫区域.为了辨别病灶性和非病灶性癫痫脑电信号,文章提出一种基于变分模态分解的癫痫脑电信号自动检测方法,首先将原信号分割成多个子信号,并对各子信号进行变分模态分解,... 癫痫是一种常见的脑部疾病,通过脑电图能非侵入地定位人脑中的致痫区域.为了辨别病灶性和非病灶性癫痫脑电信号,文章提出一种基于变分模态分解的癫痫脑电信号自动检测方法,首先将原信号分割成多个子信号,并对各子信号进行变分模态分解,然后从分解后的不同变分模态函数中提取精细复合多尺度散布熵和精细复合多尺度模糊熵两个特征并利用支持向量机进行分类.针对癫痫脑电的公共数据集,最终的实验结果表明,准确率、灵敏度和特异度三个性能指标分别达到94.24%,95.58%和90.64%,ROC曲线下面积达0.978. 展开更多
关键词 癫痫脑电 变分模态分解 精细复合多尺度 精细复合多尺度模糊 支持向量机
在线阅读 下载PDF
基于RCMDE和PNN的传动箱轴承故障诊断 被引量:2
13
作者 刘尚坤 范壮壮 +2 位作者 孔德刚 王家忠 李珊珊 《农机化研究》 北大核心 2023年第7期244-248,共5页
针对玉米收获机传动箱滚动轴承运行状态识别问题,提出了一种基于精细复合多尺度散布熵(RCMDE)和概率神经网络(PNN)的故障识别新方法。首先,对拾取的信号进行RCMDE分析,提取故障特征向量;然后,将特征向量输入PNN分类器进行训练和测试;最... 针对玉米收获机传动箱滚动轴承运行状态识别问题,提出了一种基于精细复合多尺度散布熵(RCMDE)和概率神经网络(PNN)的故障识别新方法。首先,对拾取的信号进行RCMDE分析,提取故障特征向量;然后,将特征向量输入PNN分类器进行训练和测试;最终识别出轴承故障状态和程度。传动箱轴承试验数据分析结果表明:文中方法能有效识别出轴承的不同故障状态及损伤程度,故障识别率达到99.29%,与多尺度样本熵(MSE)相比识别率更高,对农机轴承的故障诊断具有一定应用价值。 展开更多
关键词 收获机传动箱轴承 精细复合多尺度 概率神经网络 故障识别
在线阅读 下载PDF
基于RCMDE和GA-SVM的矿用滚动轴承故障诊断 被引量:8
14
作者 赵国社 黄丹璐 赵鑫 《煤炭技术》 CAS 北大核心 2021年第10期221-223,共3页
针对传统特征进行矿用轴承故障诊断时可靠性、准确性低的问题,提出了基于精细复合多尺度散布熵(RCMDE)和支持向量机(SVM)的矿用滚动轴承故障诊断方法。针对难以选取合适的SVM参数问题,使用遗传算法(GA)确定SVM参数最优值。经实验验证,... 针对传统特征进行矿用轴承故障诊断时可靠性、准确性低的问题,提出了基于精细复合多尺度散布熵(RCMDE)和支持向量机(SVM)的矿用滚动轴承故障诊断方法。针对难以选取合适的SVM参数问题,使用遗传算法(GA)确定SVM参数最优值。经实验验证,本文方法能够更准确地提取滚动轴承的故障特征信息,有效识别滚动轴承故障类型。 展开更多
关键词 滚动轴承 精细复合多尺度 遗传算法 支持向量机 故障诊断
在线阅读 下载PDF
基于VMD联合RCMDE的特定辐射源识别方法 被引量:2
15
作者 宋子豪 程伟 +1 位作者 李敬文 李晓柏 《无线电工程》 北大核心 2022年第8期1386-1394,共9页
针对常用于特定辐射源识别(Specific Emitter Identification,SEI)的典型一维特征常常引发识别性能下滑问题,高维度特征维度较大、与一般分类器结合使用时计算效率较低的问题,提出了一种基于变分模态分解(Variational Mode Decompositio... 针对常用于特定辐射源识别(Specific Emitter Identification,SEI)的典型一维特征常常引发识别性能下滑问题,高维度特征维度较大、与一般分类器结合使用时计算效率较低的问题,提出了一种基于变分模态分解(Variational Mode Decomposition,VMD)和精细复合多尺度散布熵(Refined Composite Multi-scale Dispersion Entropy,RCMDE)的SEI方法,利用VMD和RCMDE获取原始辐射源信号不同频率分量的多尺度时间复杂度特征,选择支持向量机(Support Vector Machine,SVM)完成分类识别。仿真结果表明,莱斯信道下,在-5~15 dB的信噪比(Signal-to-Noise,SNR)范围内,所提方法对3个不同辐射源个体的识别准确率达到了99.2367%,相比于其他方法有显著的性能提升。 展开更多
关键词 变分模态分解 精细复合多尺度 特定辐射源识别
在线阅读 下载PDF
基于RCMDE和KFCM的煤矿电网故障选线方法 被引量:6
16
作者 韩国国 史小军 +2 位作者 王晖 程卫健 穆艳祥 《工矿自动化》 北大核心 2022年第8期92-99,共8页
针对普遍采用谐振接地系统的煤矿电网发生单相接地故障时难以准确选线的问题,提出一种基于精细复合多尺度散布熵(RCMDE)和核模糊C均值聚类(KFCM)的煤矿电网故障选线方法。以幅值、极性和波形相似度作为选线特征量具有以下局限性:基于幅... 针对普遍采用谐振接地系统的煤矿电网发生单相接地故障时难以准确选线的问题,提出一种基于精细复合多尺度散布熵(RCMDE)和核模糊C均值聚类(KFCM)的煤矿电网故障选线方法。以幅值、极性和波形相似度作为选线特征量具有以下局限性:基于幅值和极性差异的选线方法适用性有限;若线路中的零序电流互感器极性接反,基于极性的方法直接失效;采样不同步时,基于波形相似度的选线方法难以得到正确结果。为克服上述局限性,引入RCMDE来度量各线路暂态零序电流信号的复杂程度和不规则度,以RCMDE作为选线特征量。采用KFCM算法对RCMDE进行聚类分析,以实现故障线路自动识别,并通过判断轮廓系数是否超过阈值来区分母线故障和馈线故障。最后,通过聚类得到的隶属度矩阵判断馈线故障点所在线路。仿真结果表明:①故障点所在的故障线路对应的RCMDE曲线与非故障线路间具有较大差异,可分为2类。RCMDE可作为筛选故障线路的特征指标。②发生母线故障时聚类结果中存在平均轮廓系数小于阈值的分簇,而发生馈线故障时聚类结果各分簇的轮廓系数均大于阈值,在各类故障场景下,基于RCMDE和KFCM的煤矿电网故障选线方法均能实现正确选线,说明其准确性不受故障线路、故障位置、故障合闸角及接地电阻等因素的影响。③在噪声干扰情况下,基于RCMDE和KFCM的煤矿电网故障选线方法在小电阻接地或高阻接地情况下均能实现正确选线,具有较强的抗干扰能力。④在采样不同步及故障线路零序电流互感器极性反接等情况下,基于RCMDE和KFCM的煤矿电网故障选线方法仍可实现正确选线,选线结果具有较高的鲁棒性。 展开更多
关键词 谐振接地系统 煤矿电网 单相接地故障 故障选线 精细复合多尺度 核模糊C均值聚类 暂态零序电流
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部