期刊文献+
共找到33篇文章
< 1 2 >
每页显示 20 50 100
加权精细复合多尺度散布熵与改进贝叶斯网络结合的轴承故障诊断
1
作者 仝兆景 孟令强 +1 位作者 唐晋豪 吴鹏 《机械科学与技术》 北大核心 2025年第7期1151-1158,共8页
针对多尺度散布熵方法无法准确估计信号复杂性的问题,为更精确地提取轴承振动信号的故障特征,将加权精细复合多尺度散布熵(Weighted refined composite multiscale dispersion entropy,wRCMDE)引入到轴承故障特征提取中。在此基础上,提... 针对多尺度散布熵方法无法准确估计信号复杂性的问题,为更精确地提取轴承振动信号的故障特征,将加权精细复合多尺度散布熵(Weighted refined composite multiscale dispersion entropy,wRCMDE)引入到轴承故障特征提取中。在此基础上,提出了一种基于wRCMDE与改进贝叶斯网络相结合的滚动轴承故障诊断方法。通过计算不同故障振动信号的wRCMDE,并选取合适尺度下的多个wRCMDE值作为特征向量形成特征样本,输入到改进萤火虫算法优化的贝叶斯网络中进行故障分类识别。通过实验数据分析,将所提方法与基于多尺度散布熵和精细复合多尺度散布熵的故障特征提取方法进行对比,结果表明,该方法能够更加准确地识别滚动轴承的故障类型,且识别率更高。 展开更多
关键词 加权精细复合多尺度散布 萤火虫算法 贝叶斯网络 故障诊断
在线阅读 下载PDF
基于精细复合多元多尺度散布熵和深度残差收缩网络的轴向柱塞泵故障诊断
2
作者 储焰 常远 汤何胜 《机床与液压》 北大核心 2025年第6期142-147,共6页
为了克服单传感器振动信息不能全面表达柱塞泵故障特征信息的问题,提出一种新的轴向柱塞泵故障诊断方法,将精细复合多元多尺度散布熵(RCMMDE)嵌入深度残差收缩网络(DRSN)框架中,更精确地提取轴向柱塞泵非线性故障特征。通过RCMMDE全面... 为了克服单传感器振动信息不能全面表达柱塞泵故障特征信息的问题,提出一种新的轴向柱塞泵故障诊断方法,将精细复合多元多尺度散布熵(RCMMDE)嵌入深度残差收缩网络(DRSN)框架中,更精确地提取轴向柱塞泵非线性故障特征。通过RCMMDE全面表征轴向柱塞泵故障信息,构建故障特征集;利用DRSN对轴向柱塞泵的故障进行分类;最后,通过轴向柱塞泵故障模拟实验,获取典型故障信号特征,并与其他智能诊断算法进行对比,验证模型的泛化能力,实现柱塞泵故障特征的精准识别。结果表明:随着尺度因子的增大,RCMMDE可实现轴向柱塞泵微弱故障特征的有效分离;DRSN模型提高了对高噪声振动信号的特征学习能力,故障诊断精度达到96.21%,明显优于其他分类算法。 展开更多
关键词 轴向柱塞泵 故障诊断 精细复合多多尺度散布(RCMMDE) 深度残差收缩网络(DRSN)
在线阅读 下载PDF
基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的风电机组变桨轴承退化状态评估 被引量:3
3
作者 王晓龙 李英晟 +1 位作者 付锐棋 何玉灵 《动力工程学报》 CAS CSCD 北大核心 2024年第5期782-791,共10页
针对风电机组变桨轴承服役过程环境噪声干扰严重、退化状态评估精度低的问题,提出一种基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的退化状态评估模型。该模型将监测数据状态特征获取过程由单通道拓展为多通道进行,通过提... 针对风电机组变桨轴承服役过程环境噪声干扰严重、退化状态评估精度低的问题,提出一种基于多元精细复合多尺度波动散布熵和累积欧氏距离矩阵测度的退化状态评估模型。该模型将监测数据状态特征获取过程由单通道拓展为多通道进行,通过提出的多元精细复合多尺度波动散布熵算法来获取多通道监测数据的多尺度状态特征,并将累积和检验算法与欧氏距离矩阵测度方法相结合,用于定量衡量基准样本与待分析样本间的差异,从而实现变桨轴承退化状态评估。风电机组变桨轴承全寿命周期加速疲劳实验验证结果表明:该模型能够及时捕捉到变桨轴承的初始退化时刻并且准确跟踪整个退化过程。 展开更多
关键词 风电机组 变桨轴承 退化状态评估 多元精细复合多尺度波动散布 累积欧氏距离矩阵测度
在线阅读 下载PDF
基于精细复合多尺度散布熵的抗蛇行减振器故障诊断 被引量:2
4
作者 岑潮宇 代亮成 +3 位作者 池茂儒 赵明花 郭兆团 曾鹏程 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第10期4334-4343,共10页
抗蛇行减振器作为高速列车关键悬挂元件在减轻列车横向振动提高安全性和稳定性上有重要作用,为实现对抗蛇行减振器故障进行精确诊断,针对非线性振动信号故障特征不明显的问题,提出一种自适应噪声完备集合经验模态分解(Complete ensemble... 抗蛇行减振器作为高速列车关键悬挂元件在减轻列车横向振动提高安全性和稳定性上有重要作用,为实现对抗蛇行减振器故障进行精确诊断,针对非线性振动信号故障特征不明显的问题,提出一种自适应噪声完备集合经验模态分解(Complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)与精细复合多尺度散布熵结合的故障诊断方法。首先采用CEEMDAN分解信号得到本征模态函数(Intrinsic mode function,IMF),计算精细复合多尺度散布熵组成特征集,然后融合多个通道振动信号特征并用核主成分分析法进行降维,将降维后的特征集分成训练集和测试集,最后输入到改进麻雀算法优化的支持向量机模型中进行训练与诊断。为验证方法的可行性,以机车滚动振动试验台模拟列车运行的不同速度,设置抗蛇行减振器故障工况,通过转向架和车体多个位置传感器获得试验数据进行分析。研究结果表明,经过优选的特征集能更好地捕捉抗蛇行减振器故障的特征信息,与未经优选的特征集相比故障诊断结果正确率有所提升;多通道融合特征的方法与单通道相比反映故障信息更加全面,补偿了单一通道诊断结果精确度低的不足,进一步提高了故障诊断结果正确率;改进麻雀算法优化了模型参数,解决了参数设计的盲目性,提高了模型分类识别能力,并与其他算法相比验证了优越性。运用该方法对抗蛇行减振器进行故障诊断,能够有效诊断出抗蛇行减振器故障类型,为抗蛇行减振器故障诊断提供了一种新的方法。 展开更多
关键词 抗蛇行减振器 故障诊断 改进麻雀算法 精细复合多尺度散布 支持向量机
在线阅读 下载PDF
精细复合多尺度波动散布熵在液压泵故障诊断中的应用 被引量:28
5
作者 姜万录 赵亚鹏 +1 位作者 张淑清 李满 《振动与冲击》 EI CSCD 北大核心 2022年第8期7-16,共10页
液压泵振动信号具有非线性、非平稳性的特点,熵算法在该类信号分析方面有着独到的优势,但传统的熵算法在液压泵振动信号特征提取中有计算速度慢、熵值不准确、不稳定等不足,为了更有效地提取故障特征信息并提高故障诊断准确性,将精细复... 液压泵振动信号具有非线性、非平稳性的特点,熵算法在该类信号分析方面有着独到的优势,但传统的熵算法在液压泵振动信号特征提取中有计算速度慢、熵值不准确、不稳定等不足,为了更有效地提取故障特征信息并提高故障诊断准确性,将精细复合多尺度波动散布熵(refined composite multiscale fluctuation dispersion entropy,RCMFDE)引入到液压泵的故障特征提取中,提出了一种基于RCMFDE和粒子群优化支持向量机结合的液压泵故障诊断方法。计算不同故障振动信号的RCMFDE,并选取合适尺度下的多个RCMFDE值作为特征向量形成特征样本,输入粒子群优化支持向量机中进行故障分类识别。通过仿真信号和液压泵故障实测信号进行分析,并将所提出的方法与基于多尺度样本熵(multiscale sample entropy,MSE)、多尺度排列熵(multiscale permutation entropy,MPE)、多尺度符号动态熵(multiscale symbolic dynamic entropy,MSDE)、多尺度散布熵(multiscale dispersion entropy,MDE)、精细复合多尺度散布熵(refined composite multiscale dispersion entropy,RCMDE)、多尺度波动散布熵(multiscale fluctuation dispersion entropy,MFDE)的故障特征提取方法进行对比。试验结果表明,该方法能够更加准确地识别多类液压泵故障并能对液压泵性能退化程度进行有效评估。 展开更多
关键词 波动散布 精细复合多尺度波动散布(RCMFDE) 粒子群优化支持向量机 故障诊断 液压泵
在线阅读 下载PDF
基于变分模态分解与精细复合多尺度散布熵的发电机匝间短路故障诊断 被引量:20
6
作者 何玉灵 孙凯 +2 位作者 王涛 王晓龙 唐贵基 《电力自动化设备》 EI CSCD 北大核心 2021年第3期164-172,共9页
针对多极发电机匝间短路故障诊断与识别难度高的问题,提出了变分模态分解与精细复合多尺度散布熵结合的方法处理发电机定子振动信号。所提方法应用变分模态分解将原始信号分解为多个模态分量,并依据峭度和相关系数原则选取2个不同分量... 针对多极发电机匝间短路故障诊断与识别难度高的问题,提出了变分模态分解与精细复合多尺度散布熵结合的方法处理发电机定子振动信号。所提方法应用变分模态分解将原始信号分解为多个模态分量,并依据峭度和相关系数原则选取2个不同分量进行信号的重构,应用精细复合多尺度散布熵来进行重构信号的分类及故障识别。对3对极发电机匝间短路故障前、后定子振动数据的处理效果表明,所提方法可以对发电机匝间短路故障进行有效识别与诊断,与其他多尺度熵方法相比具有一定优越性。 展开更多
关键词 多对极发电机 匝间短路故障 振动信号 变分模态分解 精细复合多尺度散布 故障诊断
在线阅读 下载PDF
精细广义复合多元多尺度反向散布熵及其在滚动轴承故障诊断中的应用 被引量:12
7
作者 郑近德 陈焱 +1 位作者 童靳于 潘海洋 《中国机械工程》 EI CAS CSCD 北大核心 2023年第11期1315-1325,共11页
多尺度反向散布熵能够有效度量时间序列的复杂性,但在粗粒化构造上存在缺陷,且在表征滚动轴承非线性故障特征时缺乏对其他通道同步信息的有效利用。为了准确提取轴承信号的故障特征,结合精细化和广义复合多尺度的思想,将表征同步多通道... 多尺度反向散布熵能够有效度量时间序列的复杂性,但在粗粒化构造上存在缺陷,且在表征滚动轴承非线性故障特征时缺乏对其他通道同步信息的有效利用。为了准确提取轴承信号的故障特征,结合精细化和广义复合多尺度的思想,将表征同步多通道数据多变量复杂度的多变量熵理论应用到轴承故障诊断中,提出了精细广义复合多元多尺度反向散布熵(RGCMvMRDE)。在此基础上,提出了一种基于RGCMvMRDE与引力搜索算法优化支持向量机(GSA-SVM)的滚动轴承故障诊断方法。首先,利用RGCMvMRDE全面表征滚动轴承故障特征信息,构建故障特征集;其次,采用GSA-SVM对故障类型进行智能识别;最后,将所提方法应用于滚动轴承实验数据分析,并将其与现有基于多尺度反向散布熵、广义多尺度反向散布熵和精细复合多元多尺度排列熵的故障特征提取方法进行了对比。研究结果表明,所提RGCMvMRDE不仅能够有效和精准地诊断轴承的不同故障类型和故障程度,且诊断效果优于上述对比方法。 展开更多
关键词 精细广义复合多多尺度反向散布 滚动轴承 故障诊断 特征提取
在线阅读 下载PDF
基于精细复合多尺度散布熵与XGBoost的海面小目标检测方法 被引量:4
8
作者 王海峰 行鸿彦 +2 位作者 陈梦 赵迪 李瑾 《电子测量与仪器学报》 CSCD 北大核心 2023年第1期12-20,共9页
针对传统海面漂浮小目标的特征检测方法难以有效提取目标特征的问题,提出了一种基于RCMDE-XGBoost海面小目标检测方法。利用变分模态分解对信号进行去噪预处理,通过精细复合多尺度散布熵提取目标的多尺度特征,构建多维度特征矩阵,输入XG... 针对传统海面漂浮小目标的特征检测方法难以有效提取目标特征的问题,提出了一种基于RCMDE-XGBoost海面小目标检测方法。利用变分模态分解对信号进行去噪预处理,通过精细复合多尺度散布熵提取目标的多尺度特征,构建多维度特征矩阵,输入XGBoost网络进行特征分类,通过模型训练,实现海面小目标检测。利用IPIX雷达实测数据库,在#54、#311、#320海情HV极化方式下检测率分别达到了93.33%、92.38%、95%,相较于图连通密度检测法平均提升12%,证明了RCMDE-XGBoost检测方法有效。 展开更多
关键词 精细复合多尺度散布 XGBoost 微弱信号检测 海杂波
在线阅读 下载PDF
基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断方法 被引量:73
9
作者 李从志 郑近德 +1 位作者 潘海洋 刘庆运 《中国机械工程》 EI CAS CSCD 北大核心 2019年第14期1713-1719,1726,共8页
为克服多尺度样本熵的不足,更精确地提取滚动轴承非线性故障特征,将一种新的非线性动力学分析方法精细复合多尺度散布熵引入到滚动轴承的故障特征提取.在此基础上,提出了一种基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断新... 为克服多尺度样本熵的不足,更精确地提取滚动轴承非线性故障特征,将一种新的非线性动力学分析方法精细复合多尺度散布熵引入到滚动轴承的故障特征提取.在此基础上,提出了一种基于精细复合多尺度散布熵与支持向量机的滚动轴承故障诊断新方法.通过滚动轴承实验数据分析,将所提方法与基于多尺度样本熵和多尺度散布熵的故障诊断方法进行了对比,结果表明:所提方法不仅能精确地识别滚动轴承故障类型和故障程度,而且故障识别率高于另两种方法. 展开更多
关键词 散布 多尺度样本 精细复合多尺度散布 滚动轴承 故障诊断
在线阅读 下载PDF
基于变分模态分解和精细复合多尺度均值散布熵的轴承故障诊断 被引量:8
10
作者 张婕 张梅 陈万利 《机电工程》 CAS 北大核心 2023年第5期682-690,共9页
为充分提取非线性、非平稳的轴承故障信号特征信息,进而提高轴承故障诊断精度,提出了一种基于变分模态分解(VMD)和精细复合多尺度均值散布熵(RCMMDE)的轴承故障诊断方法(算法)。首先,使用VMD将轴承故障振动信号分解为了多个模态分量,通... 为充分提取非线性、非平稳的轴承故障信号特征信息,进而提高轴承故障诊断精度,提出了一种基于变分模态分解(VMD)和精细复合多尺度均值散布熵(RCMMDE)的轴承故障诊断方法(算法)。首先,使用VMD将轴承故障振动信号分解为了多个模态分量,通过评估原信号与模态分量信号的互相关程度,筛选了其有效模态,并对其进行了信号重构,实现了故障信号的降噪处理目的;然后,使用精细复合均值化代替了传统粗粒化方法,利用RCMMDE方法提取了重构信号的多尺度熵值,构成了特征样本集;最后,通过鲸鱼算法(WOA)对支持向量机(SVM)进行了超参数寻优,构建了最优的故障检测模型,并将特征样本集输入到WOA-SVM模型中进行了轴承故障诊断,并通过实验评估验证了模型的有效性。研究结果表明:该模型准确率达到99.67%,精确率、召回率等各项性能指标均在99%以上,并具有很强的鲁棒性。 展开更多
关键词 轴承故障诊断 变分模态分解 精细复合多尺度均值散布 鲸鱼算法 支持向量机 超参数寻优
在线阅读 下载PDF
基于改进精细复合多尺度归一化散布熵的生物组织变性识别
11
作者 刘备 蔡剑华 +1 位作者 杨江河 彭梓齐 《传感技术学报》 CAS CSCD 北大核心 2023年第11期1761-1767,共7页
在高强度聚焦超声(HIFU)治疗过程中,生物组织变性识别是不可或缺的关键部分。多尺度散布熵(MDE)作为一种非线性方法,被广泛应用于生物组织变性识别。然而MDE在粗粒化过程中时容易出现信息丢失和稳定性较差的问题,难以全面提取组织变性... 在高强度聚焦超声(HIFU)治疗过程中,生物组织变性识别是不可或缺的关键部分。多尺度散布熵(MDE)作为一种非线性方法,被广泛应用于生物组织变性识别。然而MDE在粗粒化过程中时容易出现信息丢失和稳定性较差的问题,难以全面提取组织变性特征。为了解决上述问题,提出了基于改进精细复合多尺度归一化散布熵(IRCMNDE)的生物组织变性识别方法。引入RCMDE,将其传统粗粒化过程中的平均值计算替换为最大值计算以解决MDE传统粗粒化过程中的问题,突出信号变性特征。通过对熵值的归一化处理减弱不同参数选择导致的熵值波动,形成IRCMNDE方法。将所提方法应用于实测HIFU回波信号数据,并采用概率神经网络(PNN)进行识别。研究结果表明:相较于MPE、MDE和RCMDE方法,基于IRCMNDE的生物组织变性识别率更高,高达96.77%,能更好地区分未变性与变性生物组织。 展开更多
关键词 HIFU 改进精细复合多尺度归一化散布 生物组织 变性识别
在线阅读 下载PDF
基于精细复合多尺度散布熵的墙体内管道敲击探测方法
12
作者 李瑾 行鸿彦 +2 位作者 王海峰 吴叶丽 陈梦 《电子测量技术》 北大核心 2023年第2期25-30,共6页
为了提高墙体内管道敲击探测的准确率,本文采用精细复合多尺度散布熵检测敲击声音信号的频率和幅值的变化,提取信号中的多尺度管道特征;将构建的多维度管道特征矩阵输入到支持向量机中,使用麻雀搜索算法确定支持向量机参数最优值,通过... 为了提高墙体内管道敲击探测的准确率,本文采用精细复合多尺度散布熵检测敲击声音信号的频率和幅值的变化,提取信号中的多尺度管道特征;将构建的多维度管道特征矩阵输入到支持向量机中,使用麻雀搜索算法确定支持向量机参数最优值,通过模型训练,完成墙内埋设管道有无的分类,提出了基于精细复合多尺度散布熵的墙体内管道敲击探测方法。将此方法与其它信号处理方法进行对比分析,结果证明,本文所提方法探测准确率高达97%,远远高于其他两种方法。 展开更多
关键词 管道探测 SSA-SVM 敲击声音 精细复合多尺度散布
在线阅读 下载PDF
基于RCMFFDE和SSA-RVM的旋转机械损伤检测模型 被引量:1
13
作者 王显彬 孙阳 《机电工程》 北大核心 2025年第3期510-519,共10页
针对旋转机械系统的振动信号具有明显的非线性,严重影响故障特征提取从而导致其识别精度不佳的问题,建立了一种基于精细复合多尺度分数波动散布熵(RCMFFDE)、t-分布随机邻域嵌入(t-SNE)和麻雀搜索算法优化相关向量机(SSA-RVM)的旋转机... 针对旋转机械系统的振动信号具有明显的非线性,严重影响故障特征提取从而导致其识别精度不佳的问题,建立了一种基于精细复合多尺度分数波动散布熵(RCMFFDE)、t-分布随机邻域嵌入(t-SNE)和麻雀搜索算法优化相关向量机(SSA-RVM)的旋转机械损伤检测模型。首先,进行了基于RCMFFDE方法的特征提取,生成了特征样本,以定量反映旋转机械的不同损伤情况;然后,采用t-SNE方法,将原始高维故障特征映射至低维空间,获得了对故障更敏感的低维特征;最后,将敏感的低维故障特征向量输入至SSA-RVM多分类器中,进行了训练和测试,实现了旋转机械样本的故障识别目的;采用两种旋转机械数据集进行了实验,并从准确率、效率和抗噪性方面,将RCMFFDE-SSA-SVM方法与多种特征提取方法进行了对比。研究结果表明:RCMFFDE能用于有效提取旋转机械的故障特征,分别取得99.2%和100%的识别精度;而对敏感特征进行分类所获得的精度优于对原始特征进行分类的情形,前者比后者提高了4%;在模式识别中,SSA-RVM优于其他分类器;自制数据集的诊断精度达到了97%,特征提取的时间为16.05 s。 展开更多
关键词 非线性振动信号 特征提取时间 故障识别精度(诊断精度) 精细复合多尺度分数波动散布熵 t-分布随机邻域嵌入 麻雀搜索算法优化相关向量机
在线阅读 下载PDF
基于改进RCMDE与优化随机森林的掘进机截割头故障诊断
14
作者 马天兵 杨婷 +3 位作者 李长鹏 杜菲 史瑞 于平平 《科学技术与工程》 北大核心 2025年第9期3629-3636,共8页
针对掘进机截割振动信号故障特征不易提取和识别困难等问题,提出了一种精细复合多尺度模糊散布熵(refined composite multiscale fuzzy dispersion entropy,RCMFDE)与河马优化随机森林(hippo optimized random forest,HORF)的掘进机截... 针对掘进机截割振动信号故障特征不易提取和识别困难等问题,提出了一种精细复合多尺度模糊散布熵(refined composite multiscale fuzzy dispersion entropy,RCMFDE)与河马优化随机森林(hippo optimized random forest,HORF)的掘进机截割头故障诊断新方法。首先,利用RCMFDE全面表征掘进机截割头故障特征信息,构建故障特征数据集;其次,采用HORF对故障类型进行训练和测试,实现掘进机截割头的故障模式识别;最后,将所提方法运用在掘进机截割头实验数据分析中,并将其与现有的多尺度模糊熵、精细复合多尺度散布熵故障特征提取方法做比较。实验结果显示:RCMFDE在挖掘故障特征信息方面优于其他两种熵方法,而河马随机森林在故障分类方面优于极限学习机和支持向量机等分类器,所提故障识别模型可以更加精确地识别掘进机截割头的故障类型,且识别准确率达到100%。 展开更多
关键词 掘进机 截割振动信号 特征提取 故障诊断 精细复合多尺度模糊散布
在线阅读 下载PDF
基于KPCA-SO-KELM的抗蛇行减振器故障诊断
15
作者 岑潮宇 代亮成 +1 位作者 池茂儒 赵明花 《科学技术与工程》 北大核心 2025年第11期4551-4558,共8页
针对列车运行过程中的振动信号是复杂非线性的,并且单一通道的信号存在着信息不完全的问题,提出了一种车体和转向架上多个通道信号融合的抗蛇行减振器故障诊断的方法。首先,对列车多个通道的信号进行自适应噪声完备集合经验模态分解(com... 针对列车运行过程中的振动信号是复杂非线性的,并且单一通道的信号存在着信息不完全的问题,提出了一种车体和转向架上多个通道信号融合的抗蛇行减振器故障诊断的方法。首先,对列车多个通道的信号进行自适应噪声完备集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN),提取分解后的本征模态函数(intrinsic mode function, IMF)精细复合多尺度散布熵(refined composite multiscale dispersion entropy, RCMDE)组成特征集;其次,用核主成分分析法(kernel principal component analysis, KPCA)对提取出的特征集进行降维;最后,将最优特征子集输入到蛇优化的核极限学习机(snake optimized kernel extreme learning machine, SO-KELM)中来诊断抗蛇行减振器故障类型。试验结果表明,经过核主成分分析法优选过后的多通道融合特征集能够准确反映抗蛇行减振器不同故障类型信号特征,实现了抗蛇行减振器的故障诊断,并将蛇优化核极限学习机与其他模型对比验证了该方法的优越性。 展开更多
关键词 抗蛇行减振器 精细复合多尺度散布 故障诊断 蛇优化 核主成分分析
在线阅读 下载PDF
基于IRCMMRDE和HHO-PNN的轴承损伤辨识模型
16
作者 桂芳 李健 刘磊 《机电工程》 北大核心 2025年第1期62-71,共10页
采用单通道振动信号无法完全准确表征轴承多角度的故障信息,导致特征提取不够充分。针对这一缺陷,构建了一种基于改进精细复合多元多尺度反向散布熵(IRCMMRDE)和参数优化概率神经网络(PNN)的滚动轴承损伤辨识模型。首先,使用了振动加速... 采用单通道振动信号无法完全准确表征轴承多角度的故障信息,导致特征提取不够充分。针对这一缺陷,构建了一种基于改进精细复合多元多尺度反向散布熵(IRCMMRDE)和参数优化概率神经网络(PNN)的滚动轴承损伤辨识模型。首先,使用了振动加速度计和麦克风两种类型的传感器,同时获得了滚动轴承不同工况下的振动和声音信号,构建了故障信息量更丰富的多通道信号;随后,提出了能够同步分析多通道信号的IRCMMRDE方法,并将其用于提取滚动轴承多通道信号的故障特征;接着,采用哈里斯鹰优化器(HHO)对概率神经网络的平滑因子进行了自适应寻优,构造了网络结构最优的PNN模型;最后,将损伤样本输入至HHO-PNN模型中,进行了故障的分类识别,完成了滚动轴承样本的故障辨识;并基于滚动轴承声振信号数据集,对基于IRCMMRDE-HHO-PNN的故障诊断方法的有效性进行了验证。研究结果表明:基于IRCMMRDE和HHO-PNN的故障诊断方法的准确率达到了99.6%,平均的识别准确率达到了99.8%,优于其他多种特征提取方法;同时,对多通道融合信号进行分析取得的准确率优于单个通道的信号,准确率分别提高了8.8%和4.8%;此外,HHO-PNN分类器模型的诊断性能优于其他分类模型,更具有泛化性和实用性。 展开更多
关键词 滚动轴承 故障诊断 改进精细复合多多尺度反向散布 概率神经网络 多通道信号 哈里斯鹰优化器
在线阅读 下载PDF
基于APSO-SSD-SVD的特高压换流站OLTC振动信号降噪方法 被引量:2
17
作者 骆钊 张涛 +3 位作者 阮彦俊 石延辉 林铭良 张杨 《电力系统保护与控制》 EI CSCD 北大核心 2024年第21期13-23,共11页
随着中国特高压交直流换流站的大规模投运,有载分接开关(on-load tap changer, OLTC)已成为特高压换流站中发生故障较多的设备之一。针对强背景噪声环境下特高压换流站OLTC故障特征难以提取的问题,提出一种基于自适应粒子群算法优化奇... 随着中国特高压交直流换流站的大规模投运,有载分接开关(on-load tap changer, OLTC)已成为特高压换流站中发生故障较多的设备之一。针对强背景噪声环境下特高压换流站OLTC故障特征难以提取的问题,提出一种基于自适应粒子群算法优化奇异谱分解和奇异值分解的方法。首先,利用自适应粒子群优化(adaptive particle swarm optimization, APSO)算法对奇异谱分解算法中的模态参数进行优化,选取最优分解模态数。其次,基于最大峭度准则选取最佳奇异谱分量。然后,确定最佳重构阶数,通过奇异值分解重构信号,从而达到信号降噪的目的。将所提方法应用于仿真信号和实验信号,结果表明所提方法的信噪比达到23.302,均方根误差仅为0.004,并且波形相似参数高达0.998,优于其他降噪方法。所提方法能够更有效地实现对特高压换流站OLTC振动信号的降噪,为辅助运维人员诊断OLTC状态提供参考。 展开更多
关键词 有载分接开关 自适应粒子群优化算法 奇异谱分解 奇异值分解 精细复合多尺度散布 信号降噪
在线阅读 下载PDF
RCMNAAPE在旋转机械故障诊断中的应用
18
作者 储祥冬 戴礼军 +3 位作者 涂金洲 罗震寰 于震 秦磊 《机电工程》 CAS 北大核心 2024年第6期1039-1049,共11页
针对精细复合多尺度排列熵(RCMPE)无法充分提取旋转机械振动信号中的故障信息,从而导致旋转机械故障识别准确率不稳定这一缺陷,提出了一种基于精细复合多尺度归一化幅值感知排列熵(RCMNAAPE)、拉普拉斯分数(LS)和灰狼算法优化支持向量机... 针对精细复合多尺度排列熵(RCMPE)无法充分提取旋转机械振动信号中的故障信息,从而导致旋转机械故障识别准确率不稳定这一缺陷,提出了一种基于精细复合多尺度归一化幅值感知排列熵(RCMNAAPE)、拉普拉斯分数(LS)和灰狼算法优化支持向量机(GWO-SVM)的旋转机械故障诊断方法。首先,利用幅值感知排列熵替换了RCMPE中的排列熵,提出了RCMNAAPE,并将其用于提取旋转机械振动信号的故障特征生成特征样本;随后,采用了LS从原始的高维故障特征向量中筛选出较少的能够更准确描述故障状态的特征,构造敏感特征样本;最后,将低维的故障特征向量输入由灰狼算法优化的支持向量机中进行了训练和测试,完成了旋转机械样本的故障识别和分类,利用滚动轴承和齿轮箱故障数据集将RCMNAAPE-LS-GWO-SVM与其他故障诊断方法进行了对比分析,并开展了评估。研究结果表明:基于RCMNAAPE-LS-GWO-SVM的故障诊断方法能够有效识别旋转机械的各类故障,其识别准确率高于其他对比的故障诊断方法,其中滚动轴承故障的识别准确率达到99.33%,齿轮箱故障的识别准确率达到98.67%。虽然,该方法的特征提取效率不佳,平均特征提取时间分别为153.02 s和163.98 s,仅优于精细复合多尺度模糊熵(RCMFE),但其综合性能更加优异。 展开更多
关键词 故障识别准确率 滚动轴承 齿轮箱 精细复合多尺度归一化幅值感知排列 拉普拉斯分数 灰狼优化支持向量机
在线阅读 下载PDF
基于SORT映射的IRCMFDE在旋转机械故障诊断中的应用 被引量:2
19
作者 王潞红 邹平吉 《机电工程》 北大核心 2024年第1期11-21,共11页
针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精... 针对旋转机械振动信号的强非线性和非平稳性,导致故障特征提取困难的问题,提出了一种基于SORT映射的改进精细复合多尺度波动散布熵(IRCMFDE)和蝙蝠算法优化的相关向量机(BA-RVM)的旋转机械故障诊断方法。首先,利用SORT映射函数替换了精细复合多尺度波动散布熵(RCMFDE)方法的正态累积分布函数,同时对RCMFDE方法的粗粒化方式进行了改进,提出了基于SORT映射的IRCMFDE方法;随后,利用IRCMFDE方法提取了旋转机械振动信号的故障特征,构造了故障特征集;最后,采用BA-RVM分类器对旋转机械的故障类型进行了智能化的识别和分类;将基于IRCMFDE和BA-RVM的故障诊断方法应用于滚动轴承、离心泵和齿轮箱的实验数据分析,并将其与现有故障诊断方法进行了对比分析。研究结果表明:基于IRCMFDE和BA-RVM的故障诊断方法能够有效地识别旋转机械的故障状态,识别准确率分别达到了100%、98%和99%,相比基于RCMFDE、精细复合多尺度熵、精细复合多尺度模糊熵、精细复合多尺度排列熵和精细复合多尺度散布熵的故障特征提取方法,该故障诊断方法的效率和平均识别准确率均优于对比方法,其更适合应用于旋转机械的在线实时故障监测。 展开更多
关键词 改进精细复合多尺度波动散布 SORT映射 蝙蝠算法优化的相关向量机 旋转机械 故障分类识别
在线阅读 下载PDF
基于CMMFDE与多传感器信息融合的旋转机械故障诊断研究 被引量:3
20
作者 程志平 王潞红 +1 位作者 欧斌 吴军良 《机电工程》 CAS 北大核心 2024年第5期807-816,共10页
采用单一传感器采集的振动信号难以准确描述旋转机械动态特性,导致提取的故障特征无法准确辨识旋转机械故障。针对这一缺陷,提出了一种基于复合多元多尺度波动散布熵(CMMFDE)、多传感器信息融合和哈里斯鹰算法优化极限学习机(HHO-ELM)... 采用单一传感器采集的振动信号难以准确描述旋转机械动态特性,导致提取的故障特征无法准确辨识旋转机械故障。针对这一缺陷,提出了一种基于复合多元多尺度波动散布熵(CMMFDE)、多传感器信息融合和哈里斯鹰算法优化极限学习机(HHO-ELM)的旋转机械故障诊断方法。首先,引入复合多元粗粒化处理,提出了CMMFDE方法,避免了传统单变量分析方法只能处理单一通道振动信号而导致特征的表征性能不足的缺陷,增强了故障特征的表征性能;随后,利用布置在旋转机械不同部位的传感器收集了多种类型的信号,组成混合多通道信号,并进行了CMMFDE分析,构建了故障特征;最后,采用HHO对极限学习机的参数进行了自适应优化,并对特征样本进行了训练和测试,完成了旋转机械的故障识别工作;利用齿轮箱、离心泵两种典型的旋转机械数据集进行了实验分析。研究结果表明:该方法对多个通道的信号进行分析时,所获得的准确率达到了100%和98%,优于对单个通道信号进行分析时获得的准确率,同时CMMFDE方法的准确率和特征提取时间均优于精细复合多元多尺度熵(RCMMSE)、精细复合多元多尺度模糊熵(RCMMFE)、精细复合多元多尺度排列熵(RCMMPE)、多元多尺度波动散布熵(MMFDE)。 展开更多
关键词 旋转机械 故障诊断 齿轮箱 离心泵 复合多多尺度波动散布 哈里斯鹰优化极限学习机
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部