期刊文献+
共找到51篇文章
< 1 2 3 >
每页显示 20 50 100
基于粒子迁徙的粒群优化算法及其在岩土工程中的应用 被引量:22
1
作者 常晓林 喻胜春 +1 位作者 马刚 周伟 《岩土力学》 EI CAS CSCD 北大核心 2011年第4期1077-1082,共6页
受自然界物种迁徙的启发,提出了一种新的改进的粒群优化算法(MPSO)。算法初始化时,将粒子随机地划分为若干个子粒群,每个子粒群按照给定的策略独立演化,在演化中的指定时段进行粒子的随机迁徙和自适应变异,以保持整个种群的多样性,避免... 受自然界物种迁徙的启发,提出了一种新的改进的粒群优化算法(MPSO)。算法初始化时,将粒子随机地划分为若干个子粒群,每个子粒群按照给定的策略独立演化,在演化中的指定时段进行粒子的随机迁徙和自适应变异,以保持整个种群的多样性,避免早熟收敛。基准测试函数的计算结果表明,MPSO算法的性能优于其他几种改进算法。堆石体幂函数流变模型,参数较多,具有很强的非线性,将MPSO算法应用到堆石体幂函数流变模型的参数反演中。计算结果表明,利用反演的流变模型参数计算的坝体流变变形与实测变形在发展规律和数值上均比较吻合,证明MPSO算法在多参数、强非线性的复杂模型参数反演中的优越性。 展开更多
关键词 流变模型 参数反演 粒群优化算法 粒子迁徙 自适应变异
在线阅读 下载PDF
一种新的基于粒群优化的BP网络学习算法 被引量:15
2
作者 宋乃华 邢清华 《计算机工程》 CAS CSCD 北大核心 2006年第14期181-183,共3页
标准BP学习算法是多层感知器的一种训练学习算法,是基于无约束极值问题的梯度法而设计的。针对标准算法存在的收敛速度慢、目标函数易陷入局部极小等缺点,该文提出了一种基于粒群优化的全新学习算法——粒群学习算法。该算法采用并行全... 标准BP学习算法是多层感知器的一种训练学习算法,是基于无约束极值问题的梯度法而设计的。针对标准算法存在的收敛速度慢、目标函数易陷入局部极小等缺点,该文提出了一种基于粒群优化的全新学习算法——粒群学习算法。该算法采用并行全局寻优策略,使网络以更快的速度收敛至全局最优解,且更易于编程实现。仿真实例证明,该算法是一种简洁高效的BP神经网络学习算法,有着极为广泛的应用前景。 展开更多
关键词 多层感知器 BP算法 粒群优化 粒群学习算法
在线阅读 下载PDF
基于粒群优化的K均值算法及其应用 被引量:6
3
作者 宋凌 李枚毅 李孝源 《计算机工程》 CAS CSCD 北大核心 2008年第16期201-203,206,共4页
针对K均值聚类算法依赖于初始值的选择,且容易收敛于局部极值的缺点,提出一种基于粒群优化的K均值算法。利用粒群优化指导K均值算法的初始值选择,使其容易收敛到全局极值。将该算法应用到入侵检测中,实验结果表明该算法聚类效果好、收... 针对K均值聚类算法依赖于初始值的选择,且容易收敛于局部极值的缺点,提出一种基于粒群优化的K均值算法。利用粒群优化指导K均值算法的初始值选择,使其容易收敛到全局极值。将该算法应用到入侵检测中,实验结果表明该算法聚类效果好、收敛快、容易实现。 展开更多
关键词 粒群优化 入侵检测 K均值
在线阅读 下载PDF
微粒群优化和视觉感应相结合的图像增强方法 被引量:1
4
作者 韩泉叶 王海涌 +1 位作者 王晓明 党建武 《计算机工程与应用》 CSCD 北大核心 2011年第3期199-201,共3页
对粒群优化算法进行了改进,提出了一种微粒群优化和视觉感应相结合的图像增强方法,通过微粒群算法优化灰度图像的平均明暗信息熵差值,自适应地选择图像灰度转换函数,用以实现图像的增强。该方法不仅参数个数少,优化速度快,在搜索能力上... 对粒群优化算法进行了改进,提出了一种微粒群优化和视觉感应相结合的图像增强方法,通过微粒群算法优化灰度图像的平均明暗信息熵差值,自适应地选择图像灰度转换函数,用以实现图像的增强。该方法不仅参数个数少,优化速度快,在搜索能力上优于粒群优化算法,而且能够保证算法的全局收敛性。仿真实例证明了该方法在图像增强上的有效性和优越性。 展开更多
关键词 信息熵 图像增强 粒群优化
在线阅读 下载PDF
使用稳态系统和粒群优化算法进行基因调控网络推断 被引量:1
5
作者 应文豪 王士同 《计算机应用与软件》 CSCD 2009年第3期210-213,共4页
基因调控网络模型试图从海量的时序基因表达数据中研究基因的功能,推断基因之间的调控关系,从而揭示复杂的病理现象和生命现象。通过利用时序基因表达数据来推断一个基于稳态系统(S-system)模型的基因网络,提出使用粒群优化算法(PSO)来... 基因调控网络模型试图从海量的时序基因表达数据中研究基因的功能,推断基因之间的调控关系,从而揭示复杂的病理现象和生命现象。通过利用时序基因表达数据来推断一个基于稳态系统(S-system)模型的基因网络,提出使用粒群优化算法(PSO)来优化模型参数,从而捕捉基因表达数据中的动力学特性。实验结果表明,该方法能够使模型参数快速得到收敛,配置参数后模型仿真能力好,可以较好地识别基因调控关系。 展开更多
关键词 稳态系统 基因调控网络 粒群优化算法
在线阅读 下载PDF
基于粒群优化的图像有序盲分离算法
6
作者 王荣杰 詹宜巨 +1 位作者 周海峰 陈美谦 《中国航海》 CSCD 北大核心 2013年第4期1-6,20,共7页
针对图像的有序盲分离技术,提出一种基于粒子群优化的盲源抽取方法。该方法首先根据图像信号的高阶统计特性构造用于估计分离向量的目标函数,然后通过改进的粒子群算法优化该函数,获得最佳分离向量,并实现图像信号的逐次恢复。仿真实验... 针对图像的有序盲分离技术,提出一种基于粒子群优化的盲源抽取方法。该方法首先根据图像信号的高阶统计特性构造用于估计分离向量的目标函数,然后通过改进的粒子群算法优化该函数,获得最佳分离向量,并实现图像信号的逐次恢复。仿真实验结果表明,该方法不仅能依四阶累积量的绝对值降序地实现图像信号的盲分离,还能同时分离服从超高斯分布的语音信号和服从亚高斯分布的图像信号。 展开更多
关键词 船舶、舰船工程 粒群优化算法 盲分离 图像信号 超高斯分布 亚高斯分布
在线阅读 下载PDF
一种基于粒群优化机理的多样性抗体生成算法
7
作者 赵明 陈志刚 黄国盛 《计算机工程与应用》 CSCD 北大核心 2005年第14期6-8,共3页
保证抗体的多样性是入侵检测免疫系统成功的关键。该文就此问题开展研究,将粒群优化算法引入抗体的生成,提出了一种基于粒群优化机理的多样性抗体生成算法。模拟实验结果表明利用这一算法生成的抗体的多样性以及算法的收敛速度都令人满意。
关键词 免疫系统 抗体 粒群优化 多样性
在线阅读 下载PDF
基于粒群优化算法的云存储数据检索方法研究 被引量:4
8
作者 刁爱军 《激光杂志》 北大核心 2016年第11期98-102,共5页
通过分析云储存系统的数据处理及存储的原理,提出基于粒群优化算法的云存储数据检索方法主要通过对云存储数据的关键词进行相似度对比,利用粒群优化算法的全局最优及局部最优算法,对查询数据进行匹配,直至寻找到最优查询结果。为了验证... 通过分析云储存系统的数据处理及存储的原理,提出基于粒群优化算法的云存储数据检索方法主要通过对云存储数据的关键词进行相似度对比,利用粒群优化算法的全局最优及局部最优算法,对查询数据进行匹配,直至寻找到最优查询结果。为了验证设计方法的可行性及性能,在Matlab软件中实现优化模型并构建实验场景,模拟云存储过程及数据检索过程,对此数据检索优化方法进行测试验证。仿真结果表明,在模型稳定性方面,粒群优化算法随着粒子位置的迭代,模型逐渐收敛且能够查询出最优解;在模型应用方面,查询响应延时较随机查询模型减少了34.7%,且准确率达到99.6%。总之,设计的基于粒群优化算法的云存储数据检索方法具有较高的检索精度及稳定性。 展开更多
关键词 云存储 粒群优化 数据检索 最优解 响应延时
在线阅读 下载PDF
孤岛风柴蓄复合发电功率粒子群优化分配研究 被引量:6
9
作者 许昌 李旻 +2 位作者 任岩 刘德有 郑源 《电力系统保护与控制》 EI CSCD 北大核心 2013年第11期85-92,共8页
利用可再生能源发电是海岛解决用电和吃水难问题的有效途径之一。对南海某海岛的风力资源和用电负荷分析后,提出采用风柴蓄复合发电蓄电为海岛提供电力,多余电力用于海水淡化的方案。在风柴蓄复合发电的功率设计中往往依靠经验,提出应... 利用可再生能源发电是海岛解决用电和吃水难问题的有效途径之一。对南海某海岛的风力资源和用电负荷分析后,提出采用风柴蓄复合发电蓄电为海岛提供电力,多余电力用于海水淡化的方案。在风柴蓄复合发电的功率设计中往往依靠经验,提出应用改进的粒子群优化方法对孤岛风柴蓄复合发电的风力发电机组台数、柴油机台数和蓄电池容量进行优化设计,优化中采用度电成本最小作为目标,最小失电率作为约束条件,能量调度按照首先应用可再生能源发电,其次是蓄电池电量,最后调用柴油机发电的策略。结果显示,改进优化方法的效率比基本的粒子群优化算法稍低,但是可以得到更加优化的结果。进一步分析了当柴油价格、负荷、蓄电池价格和风力发电机成本变化后,优化出新的风力发电机、柴油发电机和蓄电池配置,分析了优化配置变化的原因。研究可以为在孤立海岛采用风柴蓄复合发电蓄电的设计提供参考。 展开更多
关键词 孤立海岛 风力发电 柴油机 粒群优化算法
在线阅读 下载PDF
Application and optimization design of non-obstructive particle damping-phononic crystal vibration isolator in viaduct structure-borne noise reduction
10
作者 SHI Duo-jia ZHAO Cai-you +3 位作者 ZHANG Xin-hao ZHENG Jun-yuan WEI Na-chao WANG Ping 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2513-2531,共19页
The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructi... The problems associated with vibrations of viaducts and low-frequency structural noise radiation caused by train excitation continue to increase in importance.A new floating-slab track vibration isolator-non-obstructive particle damping-phononic crystal vibration isolator is proposed herein,which uses the particle damping vibration absorption technology and bandgap vibration control theory.The vibration reduction performance of the NOPD-PCVI was analyzed from the perspective of vibration control.The paper explores the structure-borne noise reduction performance of the NOPD-PCVIs installed on different bridge structures under varying service conditions encountered in practical engineering applications.The load transferred to the bridge is obtained from a coupled train-FST-bridge analytical model considering the different structural parameters of bridges.The vibration responses are obtained using the finite element method,while the structural noise radiation is simulated using the frequency-domain boundary element method.Using the particle swarm optimization algorithm,the parameters of the NOPD-PCVI are optimized so that its frequency bandgap matches the dominant bridge structural noise frequency range.The noise reduction performance of the NOPD-PCVIs is compared to the steel-spring isolation under different service conditions. 展开更多
关键词 non-obstructive particle damping phononic crystal vibration isolator band gap optimization floating-slab track bridge structure-borne noise control particle swarm optimization
在线阅读 下载PDF
一种新的半监督入侵检测算法 被引量:7
11
作者 宋凌 李枚毅 李孝源 《计算机应用》 CSCD 北大核心 2008年第7期1781-1783,共3页
针对无监督学习的入侵检测算法准确度不高、监督学习的入侵检测算法训练样本难以获取的问题,提出了一种粒子群改进的K均值半监督入侵检测算法,利用少量的标记数据生成正确样本模型来指导大量的未标记数据聚类,对聚类后仍未能标记的数据... 针对无监督学习的入侵检测算法准确度不高、监督学习的入侵检测算法训练样本难以获取的问题,提出了一种粒子群改进的K均值半监督入侵检测算法,利用少量的标记数据生成正确样本模型来指导大量的未标记数据聚类,对聚类后仍未能标记的数据采用粒群优化的K均值聚类,有效提高分类器的分类准确性,并实现了对新类型攻击的检测。实验结果表明,算法的整体检测效果明显优于基于无监督学习和监督学习的检测算法。 展开更多
关键词 半监督聚类 入侵检测 粒群优化 K均值
在线阅读 下载PDF
Innovative approaches in high-speed railway bridge model simplification for enhanced computational efficiency
12
作者 ZHOU Wang-bao XIONG Li-jun +1 位作者 JIANG Li-zhong ZHONG Bu-fan 《Journal of Central South University》 CSCD 2024年第11期4203-4217,共15页
In the realm of high-speed railway bridge engineering,managing the intricacies of the track-bridge system model(TBSM)during seismic events remains a formidable challenge.This study pioneers an innovative approach by p... In the realm of high-speed railway bridge engineering,managing the intricacies of the track-bridge system model(TBSM)during seismic events remains a formidable challenge.This study pioneers an innovative approach by presenting a simplified bridge model(SBM)optimized for both computational efficiency and precise representation,a seminal contribution to the engineering design landscape.Central to this innovation is a novel model-updating methodology that synergistically melds artificial neural networks with an augmented particle swarm optimization.The neural networks adeptly map update parameters to seismic responses,while enhancements to the particle swarm algorithm’s inertial and learning weights lead to superior SBM parameter updates.Verification via a 4-span high-speed railway bridge revealed that the optimized SBM and TBSM exhibit a highly consistent structural natural period and seismic response,with errors controlled within 7%.Additionally,the computational efficiency improved by over 100%.Leveraging the peak displacement and shear force residuals from the seismic TBSM and SBM as optimization objectives,SBM parameters are adeptly revised.Furthermore,the incorporation of elastoplastic springs at the beam ends of the simplified model effectively captures the additional mass,stiffness,and constraint effects exerted by the track system on the bridge structure. 展开更多
关键词 high-speed railway bridge engineering track-bridge system model simplified bridge model artificial neural networks particle swarm optimization seismic analysis
在线阅读 下载PDF
基于BIC与PSO的简约语音识别系统创建 被引量:1
13
作者 包希日莫 高光来 张璟 《计算机工程与应用》 CSCD 2013年第10期14-17,117,共5页
针对当前尚无建立简约高效语音识别系统标准方法的情形,提出了通过贝叶斯信息准则(Bayesian InformationCriterion,BIC)中的权衡系数折中选择系统识别率与复杂度,利用改进的粒子群优化(Particle Swarm Optimization,PSO)算法优化声学模... 针对当前尚无建立简约高效语音识别系统标准方法的情形,提出了通过贝叶斯信息准则(Bayesian InformationCriterion,BIC)中的权衡系数折中选择系统识别率与复杂度,利用改进的粒子群优化(Particle Swarm Optimization,PSO)算法优化声学模型拓扑结构,进而创建高效简约语音识别系统的新方法。TIDigits上的实验表明,与传统方法创建的同复杂度的基线系统相比,用该方法建立的新系统句子正确率提升了7.85%,与同识别率的基线系统相比,系统复杂度降低了51.4%,说明新系统能够以较低的复杂度获得较高的识别率。 展开更多
关键词 隐马尔可夫模型 语音识别 高效简约系统 声学模型拓扑结构 贝叶斯信息准则 粒群优化
在线阅读 下载PDF
Application of SVM and PCA-CS algorithms for prediction of strip crown in hot strip rolling 被引量:16
14
作者 JI Ya-feng SONG Le-bao +3 位作者 SUN Jie PENG Wen LI Hua-ying MA Li-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第8期2333-2344,共12页
To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance... To make up the poor quality defects of traditional control methods and meet the growing requirements of accuracy for strip crown,an optimized model based on support vector machine(SVM)is put forward firstly to enhance the quality of product in hot strip rolling.Meanwhile,for enriching data information and ensuring data quality,experimental data were collected from a hot-rolled plant to set up prediction models,as well as the prediction performance of models was evaluated by calculating multiple indicators.Furthermore,the traditional SVM model and the combined prediction models with particle swarm optimization(PSO)algorithm and the principal component analysis combined with cuckoo search(PCA-CS)optimization strategies are presented to make a comparison.Besides,the prediction performance comparisons of the three models are discussed.Finally,the experimental results revealed that the PCA-CS-SVM model has the highest prediction accuracy and the fastest convergence speed.Furthermore,the root mean squared error(RMSE)of PCA-CS-SVM model is 2.04μm,and 98.15%of prediction data have an absolute error of less than 4.5μm.Especially,the results also proved that PCA-CS-SVM model not only satisfies precision requirement but also has certain guiding significance for the actual production of hot strip rolling. 展开更多
关键词 strip crown support vector machine principal component analysis cuckoo search algorithm particle swarm optimization algorithm
在线阅读 下载PDF
A composite particle swarm algorithm for global optimization of multimodal functions 被引量:7
15
作者 谭冠政 鲍琨 Richard Maina Rimiru 《Journal of Central South University》 SCIE EI CAS 2014年第5期1871-1880,共10页
During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution qual... During the last decade, many variants of the original particle swarm optimization (PSO) algorithm have been proposed for global numerical optimization, hut they usually face many challenges such as low solution quality and slow convergence speed on multimodal function optimization. A composite particle swarm optimization (CPSO) for solving these difficulties is presented, in which a novel learning strategy plus an assisted search mechanism framework is used. Instead of simple learning strategy of the original PSO, the proposed CPSO combines one particle's historical best information and the global best information into one learning exemplar to guide the particle movement. The proposed learning strategy can reserve the original search information and lead to faster convergence speed. The proposed assisted search mechanism is designed to look for the global optimum. Search direction of particles can be greatly changed by this mechanism so that the algorithm has a large chance to escape from local optima. In order to make the assisted search mechanism more efficient and the algorithm more reliable, the executive probability of the assisted search mechanism is adjusted by the feedback of the improvement degree of optimal value after each iteration. According to the result of numerical experiments on multimodal benchmark functions such as Schwefel, Rastrigin, Ackley and Griewank both with and without coordinate rotation, the proposed CPSO offers faster convergence speed, higher quality solution and stronger robustness than other variants of PSO. 展开更多
关键词 particle swarm algorithm global numerical optimization novel learning strategy assisted search mechanism feedbackprobability regulation
在线阅读 下载PDF
Hybrid particle swarm optimization with chaotic search for solving integer and mixed integer programming problems 被引量:21
16
作者 谭跃 谭冠政 邓曙光 《Journal of Central South University》 SCIE EI CAS 2014年第7期2731-2742,共12页
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.... A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions. 展开更多
关键词 particle swarm optimization chaotic search integer programming problem mixed integer programming problem
在线阅读 下载PDF
A method combining refined composite multiscale fuzzy entropy with PSO-SVM for roller bearing fault diagnosis 被引量:13
17
作者 XU Fan Peter W TSE 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2404-2417,共14页
Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined compo... Combining refined composite multiscale fuzzy entropy(RCMFE)and support vector machine(SVM)with particle swarm optimization(PSO)for diagnosing roller bearing faults is proposed in this paper.Compared with refined composite multiscale sample entropy(RCMSE)and multiscale fuzzy entropy(MFE),the smoothness of RCMFE is superior to that of those models.The corresponding comparison of smoothness and analysis of validity through decomposition accuracy are considered in the numerical experiments by considering the white and 1/f noise signals.Then RCMFE,RCMSE and MFE are developed to affect extraction by using different roller bearing vibration signals.Then the extracted RCMFE,RCMSE and MFE eigenvectors are regarded as the input of the PSO-SVM to diagnose the roller bearing fault.Finally,the results show that the smoothness of RCMFE is superior to that of RCMSE and MFE.Meanwhile,the fault classification accuracy is higher than that of RCMSE and MFE. 展开更多
关键词 refined composite multiscale fuzzy entropy roller bearings support vector machine fault diagnosis particle swarm optimization
在线阅读 下载PDF
Genetic algorithm and particle swarm optimization tuned fuzzy PID controller on direct torque control of dual star induction motor 被引量:16
18
作者 BOUKHALFA Ghoulemallah BELKACEM Sebti +1 位作者 CHIKHI Abdesselem BENAGGOUNE Said 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1886-1896,共11页
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he... This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance. 展开更多
关键词 dual star induction motor drive direct torque control particle swarm optimization (PSO) fuzzy logic control genetic algorithms
在线阅读 下载PDF
Path planning for UAVs formation reconfiguration based on Dubins trajectory 被引量:7
19
作者 CHEN Qing-yang LU Ya-fei +3 位作者 JIA Gao-wei LI Yue ZHU Bing-jie LIN Jun-can 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第11期2664-2676,共13页
Multiple UAVs are usually deployed to provide robustness through redundancy and to accomplish surveillance,search,attack and rescue missions.Formation reconfiguration was inevitable during the flight when the mission ... Multiple UAVs are usually deployed to provide robustness through redundancy and to accomplish surveillance,search,attack and rescue missions.Formation reconfiguration was inevitable during the flight when the mission was adjusted or the environment varied.Taking the typical formation reconfiguration from a triangular penetrating formation to a circular tracking formation for example,a path planning method based on Dubins trajectory and particle swarm optimization(PSO)algorithm is presented in this paper.The mathematic model of multiple UAVs formation reconfiguration was built firstly.According to the kinematic model of aerial vehicles,a process of dimensionality reduction was carried out to simplify the model based on Dubins trajectory.The PSO algorithm was adopted to resolve the optimization problem of formation reconfiguration path planning.Finally,the simulation and vehicles flight experiment are executed.Results show that the path planning method based on the Dubins trajectory and the PSO algorithm can generate feasible paths for vehicles on time,to guarantee the rapidity and effectiveness of formation reconfigurations.Furthermore,from the simulation results,the method is universal and could be extended easily to the path planning problem for different kinds of formation reconfigurations. 展开更多
关键词 unmanned aerial vehicles formation reconfiguration path planning Dubins trajectory particle swarm optimization
在线阅读 下载PDF
Dynamic services selection algorithm in Web services composition supporting cross-enterprises collaboration 被引量:7
20
作者 胡春华 陈晓红 梁昔明 《Journal of Central South University》 SCIE EI CAS 2009年第2期269-274,共6页
Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services sele... Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms. 展开更多
关键词 Web services composition optimal service selection improved particle swarm optimization algorithm (IPSOA) cross-enterprises collaboration
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部