期刊文献+

基于粒群优化算法的云存储数据检索方法研究 被引量:4

Research of Cloud Storage Data Retrieval Method Based on Particle Swarm Optimization Algorithm
在线阅读 下载PDF
导出
摘要 通过分析云储存系统的数据处理及存储的原理,提出基于粒群优化算法的云存储数据检索方法主要通过对云存储数据的关键词进行相似度对比,利用粒群优化算法的全局最优及局部最优算法,对查询数据进行匹配,直至寻找到最优查询结果。为了验证设计方法的可行性及性能,在Matlab软件中实现优化模型并构建实验场景,模拟云存储过程及数据检索过程,对此数据检索优化方法进行测试验证。仿真结果表明,在模型稳定性方面,粒群优化算法随着粒子位置的迭代,模型逐渐收敛且能够查询出最优解;在模型应用方面,查询响应延时较随机查询模型减少了34.7%,且准确率达到99.6%。总之,设计的基于粒群优化算法的云存储数据检索方法具有较高的检索精度及稳定性。 Through analyzing the principle of data storage processing in cloud storage system, the proposed cloud storage data retrieval method based on particle swarm optimization algorithm is mainly based on key words similarity comparison among cloud storage data using the global optimal and local optimal algorithm particle swarm optimization algorithm, and then make query data matching to find the optimal query results. In order to verify the feasibility of the designed method and its performance, authors achieve the optimization model and build the scene in the Matlab soft- ware, and make simulation of the process of cloud storage and data retrieval process to make validation to optimize data retrieval methods. Simulation results show that, in the aspect of model stability, particle swarm optimization algorithm can query the optimal solution with iterative particle position and model gradually convergence; In the aspect of model application, query response delay is decreased by 34.7% compared with random query model, which has 99.6% accuracy. All in all, the cloud storage data retrieval method based on particle swarm optimization algorithm this paper designed has high retrieval accuracy and stability.
作者 刁爱军
出处 《激光杂志》 北大核心 2016年第11期98-102,共5页 Laser Journal
基金 江苏省高等职业院校国内高级访问学者计划资助项目(2013fx096)
关键词 云存储 粒群优化 数据检索 最优解 响应延时 cloud storage particle swarm optimization data retrieval optimal solution response latency
作者简介 刁爱军(1976-),男(汉族),江苏南京人,硕士,副教授,主要研究方向:计算机网络应用。
  • 相关文献

参考文献4

二级参考文献39

  • 1张兵,陈德钊.迭代遗传算法及其用于生物反应器补料优化[J].化工学报,2005,56(1):100-104. 被引量:16
  • 2张兵,陈德钊,吴晓华.分级优化用于边值固定的化工动态优化问题[J].化工学报,2005,56(7):1276-1280. 被引量:11
  • 3赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 4Yuwono B, Lee D. Server rankin8 for distributed text retrieval systems on Intemet[A]. Proc of the Int Conf On Database Systems for Adv Applications[ C]. 1997.41 -49.
  • 5Craswell N, Bailey P, Hawking D. Server selection on the World Wide Web [ A ]. Proc of the Fifth ACM Confexenee on Digital Libraries[ C]. ACM, 2000.37 - 46.
  • 6Kirseh S T. Document retrieval over networks wherein ranking and relevance scores are computed at the client for multiple database documents[P]. U.S. Patent:5,659,732.
  • 7Craswell N, Hawking D, Thistlewaite P. Merging Results from Isolated Search Engines[A]. Proe of the Tenth Australasian Database Conf[C].1999.189-200.
  • 8Brin S, Page L. The anatomy of a large-scale hypertextual web search engine[A] .Proc 7th World Wide Web Conf (WWW'98)[C].BHshane, Australia, 1998.
  • 9Kleinberg J M. Authoritative sources in a hyperlinked environment[ J]. Journal of ACM, 1999,46 : 604 - 632.
  • 10Callan J. Distributed information retrieval. Croft W B. Advances in information retrieval[M]. Kluwer Academic Publishers, 2000. 127- 150.

共引文献382

同被引文献30

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部